Agilent Technologies

Advanced Design System 2002
Expressions, Measurements, and

Simulation Data Processing

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.

Contents

1

Introduction to Expressions and Functions

SIMUIALOT EXPIrESSIONSueeiiiiie ettt e et e e e e st e e e e s esnseaee e e e s enneees 1-1

Measurement EQUALIONS.cuiii ittt niaee e 1-1

AEL Math FUNCLONS ...ttt e 1-2

Using the MeasEqn Function Reference

Manipulating Simulation Data with EQUAtIONSccccieeieiiiiiiiieee e 2-2
SIMUIALION DALAeeeieiie ettt e sbe e e seeeeean 2-2
CASE SENSIIVITY ..vvieiee et e e e e e e e e st e e e e e s ene 2-2
Measurements and EXPreSSIONSuvviiieiiiiiiiiiee s eiiieiee e iieee e e e e 2-2
Variable NAMESeiiiii e 2-3
Simple SWweeps and USING “[7 . eeeeeeeiiiiiieee et 2-4
S-Parameters and MaLFCEScoviviiiiiiee e 2-5
= L o SRS 2-5
Multidimensional Sweeps and INAEXINGccvvviiiiiiiiiiiiie e 2-5
Working with Harmonic Balance (HB) Datacccccveeiiiiiiieeeeeiiiecee e 2-6
Working With TranSient DAtA..........ccovueriiiiee e 2-6
Working wWith ENVEIOPE Data...........c.uveeiiiiiiiiiiieeeiieieee e 2-6
If-tNEN-€ISE@ CONSIIUCTcueiiiiiiiie e 2-7
GENEIAtING DALAceiieiiiiiiiee e 2-7
OPErator PreCEAERNCEuiiiieiiiieiii ettt e e et e e e e 2-8
BUIIE-IN CONSTANTS ...t 2-9
Budget Measurement ANAIYSIS........ccoiuiiiiiiiiiiiie e 2-10
MEBASEQN ettt e e e e e e e e e e 2-11
User-Defined FUNCHIONS.........uuiiiiiiieiiiee et 2-12

MeasEqn Function Reference

F= Lo Tot0 | (o] o I 3-2
F= Lo Tolo | (o 1S PP PO PUPPPRIN 3-3
= ool | (o) N PO UEPPRTOPPRRRN 3-4
F= 10 ToT0 | (o 140 3-5
= 101 PP POTRR S URUPPPRIN 3-6
= (o]0 1 PRSPPI 3-7
= Tod o] O PP O PRSP TPR 3-8
= Lo] o] Y TP PO TP PP PP PP PPPPPPPPPP 3-11
= Lo (o [o PSPPSR 3-14
= 1 I 3-15
= L= o 1SR 3-16
= 1=V 0 12O 3-17
DI _PIAAGPSK ...t 3-18

DI GPSK e 3-20

o]0 o [1= To [PO T TSP PPPTRP 3-22
o1 To [0 - V1 o PR 3-24
DUA_GAIN_COMP o st 3-26
DU GAMIMAL ..ot 3-28
10 To [0 1< T o =T o PR 3-30
o180 I | F PO PP PRSPPI 3-31
o]0 o [o1 o [T o 1RO T T PSPPSR 3-33
o0 To [0 o £=Y= N o 11 SR 3-35
o180 [o1 PP PP PP PPRSTPR 3-37
o]0 o [111V G o [o PP TSP PRSP 3-39
o0 To [o111 R =) 1 SR 3-41
o180 [T o PO PP PP PP 3-43
o1 Lo [{ o PP PPEPRPPPRRPR 3-45
DUT_VSWI <.ttt sab e e b e e e nnne s 3-47
(o= 4 g (o T 0 PO O PR U PP PU PRSPPI 3-49
Lo o | PO O U OO PP PP 3-50
Tod0 [1 o = 2SSOSR 3-51
CRANNEI_POWET_Vi. .ttt bbb e 3-52
ChANNEL_POWET VI .. e e s e e e e ae 3-54
o3 o o USSR 3-56
o | PSRN 3-57
CITCIE et et 3-58
{03 | PPN 3-59
(03 001 o] SRR TPR 3-60
(oo] o] PP PP PPPR P TOPPPRRN 3-61
(o] 0 YR =V o PP PPRPTPPPPPPP 3-62
To70] 0151 1= F=1 1 o] o TP SEPOPPSRR 3-65
(070] 10 U PP 3-68
ToTo] 1 (o 18T o o] - S OUPRSR 3-69
[0 OO P PR PTPPPPPPPIN 3-70
COSI Lttt 3-71
(03 (011 ST SPPPPRR PP POPPRRT 3-72
(o1 (11 oo] TR P P PP 3-73
Lo1¥ o 0 T o] o o P PP PPPPTOPPPPRN 3-74
(o101 o =T U o o OO 3-75
[0] TR TPR 3-76
(o121 1o IO U PP P PRSPPI 3-77
o o (o T o USSP 3-78
[0 =T o T PRSPPI 3-79
AEIAY _PALN ..t e e aae 3-80
AEV_IIN_PRASE .oeiieieee e e e e e 3-81

L= PO O PP PP PP PP 3-83

=T (o PO T U PP PP PP TTPPOT 3-84

[PP P PP PP 3-85

(Y TP PP P PP PPPPPPPPPP 3-86

L ST P PP PP PP PP ROPPPPPRPN 3-87

FINO_INAEX .ttt e et e e 3-88

FlOBL. .. e 3-89

LS T PP PP PP UPPTROUPPUPRPN 3-90

157 0o SR O TP OP PP TUPR 3-94

(0T T2 o 10 1= PP P PR P PR 3-97

o = U o1 (o] [USSP 3-98

(o F= 11 o011 o H O PO PP PP PPRN 3-99

[T =T = L PP TR P PP PPRPPPPPPPPP 3-100
(o= A= L1 ST PRPTPPPPPPP 3-101
(o [o1 (= PRSPPSO PPR 3-102
o] oI o1 (o1 [T PP UPPPPTOPPPPRN 3-103
o LS oo TSRS 3-104
(15510 o] = 11 H PO PP PRSPPI 3-105
NEOADCA.ciiiii 3-106
LS .t 3-107
0110)V PRSPPSO TPR 3-108
NEOZ ... 3-109
(10 = o1 11 1Y/ PSR 3-110
1 (o PP PTRPTPPPI 3-111
1 (o (= o PP EPRPPPRRPR 3-112
14 F= 1o [P PPUPTPPPTRP 3-113
(100 [T o PRSPPI 3-114
o PP TTTRRPPIN 3-115
(141 (=T |- (=P RR 3-116
(101 =] o PRSPPI 3-117
(11T £ PP PP PP ST PPPRPI 3-118
192 T 1 PSR 3-119
(101G o1 | TSP UUPPPPPPPI 3-120
0] 1 PSP PP PPPPPPPPPPR 3-121
(157 011 = L PR 3-122
L PRSPPI 3-123
| StAD CIMCIE ... e 3-124
IS = L T =T [o o SR 3-125
1 PP 3-126
(oo PO PPPPOUPPPRPTRRPI 3-127

MAPL CIFCIE ettt e e e e st bt e e e s s aabr e e e e s aanneees 3-130
LT T oA o] o [SR 3-131
11 1= O TP P PP PTPPRR PP 3-132
(0T M o = 1L o O T PSP PPPTRP 3-133
[T DG 1T [PR 3-134
L= o 11T OO RRTTP 3-135
[11T 1 PP 3-136
INEAN_OULET ...ttt ettt ettt e e e e e e e e e e e e e e e e e e s e e e s aaa et bbb bb e bbb ea et e e e e eeaaaaaaaaaaaaaaaaaanaan 3-137
[0 T=To - o PSR 3-138
00110 P PO PP PR PP PR PPPRPI 3-139
01T T T T [PR 3-140
L0011 T 01U 1= S PP O PP PPR PR 3-141
00D P OO PP PP PPPRP 3-142
[aT0Y/ gL = LY== o - PR 3-143
1 0 TP P PP PTPTRRPT 3-145
[TV o]0 0= PO T PP PPPRRP 3-146
[S o] (o] [PR 3-147
IS_IWE ML Lottt ettt ettt ettt e e it e e ekt e e st bt e e skt et e et e e e enbb e e e b e e e nree s 3-148
NS_PWIE_TEF W Lo e 3-149
(0] = TP PRTPRRT 3-150
02T PO PR RPTPPPTPPR 3-151
S | PP PP PT PP PR PP 3-152
[01=T4 010 (PP UPTPPP TP 3-153
(PP PPP 3-154
1o 1 =Y o VOO T TP PO PP PP 3-155
L= TS PSR 3-156
] aF= T o] o] o PP PP ST 3-157
PRASEAEY ...t 3-158
L= LT =T PR 3-159
PlOT_VS ettt bbbt e e b e e aae s 3-160
[010] = SO OO PPPTRP 3-161
0101 PP UPT PP PP 3-162
01] 01T o PP PPPTPPR 3-163
[015] o[ol (=1 o F TP PPPPPPPPPPPP 3-164
o o PSR 3-165
o] TP 3-166
{0111 G o = U o OO PSP PPPTRP 3-167
2210 I OO PP PR OPPRP 3-168
1= Y- SR PSRRSP 3-169
relative_NOISE Wuiiiiiiiiieee e 3-170
L] o] o] =SSR 3-172

vi

LSS =L o I o[o L= OO 3-174
LI = Lo T (=T (o] o PSSO 3-175
sample_delay _pPiddgpsKc.eoo i 3-176
SAMPIE_dElAY _GPSK ...evieeeeiiiiiiiie e 3-177
1] A= L L PP PPPPRRR 3-178
5] {0 | SRS 3-179
LS | DT P PP P PP PPPPPPPPPP 3-180
] PP TP 3-181
L] [PPSO PP PO PTPPPPPPPIN 3-182
L]0 o TP TP P PP PP ST TPPRP 3-183
Sz ettt a e s e e e e e e e e e n e 3-184
SIM_GAMIMAL ... e e e e e e et e e e e e e e e e e e s e e s e s e e e e e e eeees 3-185
SIM_GAMIMEBZ ...t e et et ettt e e e e e e e e e e e e e e s s aasaa e s e ebnnb b ne b b s nneeeeeeeeeeeeas 3-186
L] 10 T2 PP 3-187
] L1722 PP PRPPPPOPPPRPPN 3-188
SIM_ZL oottt 3-189
SIM_Z2 oot e et e e e e e s s e e e e e e e e e e n e 3-190
L] | PP PP OPPPPPPPPINN 3-191
L= PP PP 3-192
SPEC_POWEL ... e e ettt ettt ettt et e anhaabbab b bt tn e et e eeeeeeaeas 3-193
L] o 10T =V USRI 3-195
SPUF_traCK _WIth ... e 3-197
LS | OO 3-199
SEAD_FACT ... e 3-200
1S = | 41T LSOO 3-201
S0 0 [P PP O PP PP PP PPRP 3-202
LS (0 7= o ol o RO OUPSRR 3-203
SEON e 3-204
] (0 12T PP PRPPRRT 3-205
L1 (0)PP P PP PP 3-206
SHOZ ettt 3-207
LS o PO URPPPPPPPRRTI 3-208
LY L=T=T o e L1 o OO PP SPTPR 3-209
Y= o T =S PP PPPPTOPPPPRPN 3-210
52 Lo PP 3-211
2= 10 o SRR 3-212
LU= V=101 (o] PP PPPT TSP 3-213
EFANSPIOSE ..ttt ettt ettt et et e nnaanbaarae 3-215
LES OO PP PP UPRRN 3-216
11 L= PP PP PP P TP PP TRTRTRRTIN 3-218
U011V =T PP PUPTP PP 3-219

Vii

VEC FAIN ettt e e e e e e e e e ——————————- 3-221
£ L o - 1 o SRS 3-222
Ao 1 Ao = 11 4T 11 = O PO RPTOPRON 3-223
L L TP PP PP PP TP PPN 3-224
(VL] oL (=1 o LT PP T PP TP 3-225
L2 SO TS PPPPPPPPRPRTN 3-226
1T S PP PP PP PO PR PPPPUPRPN 3-227
AL = o TR PP U PP P TR U TR RTRTRRTIN 3-228
1T/ SRS 3-229
(VA= (o TET=T 0 T PP PPPT PO 3-230
1L P OO PP PP PR OVRPUPRPON 3-231
V0] 0 PRI 3-232
AL = Lo Tod o PP PPPPT PRI 3-233
100] TP O TP POP PP PUPRN 3-234
V20 PRI 3-235
V200 2T PP PP PP P TP PR TRTRTRRTIR 3-236
P4] (0SSP 3-237
4] o PP TP PUPPPPPPINN 3-238
o] o | ST TP PP P PP PP PPPPPPPPPPPP 3-239
4 10 1= o oo USRS 3-240
4 10) o PSPPSR 3-241
4 (0L SO T TP PP PPPPPPPPPPPP 3-242
4 (0)PP 3-243
4 Simulator Expression Reference
How to Enter Simulator EXPreSSIONSccoiueeeiiieeaiiieeiiiiee st siee e e snee e 4-1
SIMUIALOT EXPIrESSIONSuiiiiiiie ettt ettt e e et e e e e s et e e e e s enneees 4-2
Simulator Variables and CONSLANEScuviiiieiiiiiiiie e 4-9
Mathematical Operators and Hierarchycccoceoiiiieiniii i 4-10
Index

viii

Chapter 1: Introduction to Expressions and
Functions

This document describes the expressions and functions that are available within
Advanced Design System. These functions or equations are divided into two distinct
categories based on their roles in ADS. Although there is an overlap among many of
the more commonly used functions, they are derived from separate sources,
evaluated by ADS at different times, and can have subtle differences in their usages.
Thus, they need to be considered separately. Refer to Figure 1-1 in this chapter for an
overview of how ADS evaluates and uses Simulator Expressions and Measurement
Equations.

Simulator Expressions

The first category of equations or functions are the ones used internally during
simulation runtime, known as Simulator Expressions or sometimes as VarEqn
functions . These expressions or functions can be entered into the program by means
of the VarEqn component or used in place of a parameter for any component: for
example in a resister, R=sin5. These functions are evaluated at the start of
simulation. If a term is undefined at the start of simulation, such as R=S;;, where the
results of S;; will not be known until the simulation is complete, an error will be

returned.

For information on the general use of VarEqn components, place a VarEqn component
on a Schematic, double click it, and then click the Help button in the Component
dialog box. Or from any ADS Window choose Help > Topics and Index > Components
> Circuit Components > Introduction and Simulation Components > Chapter 1,
Introduction > VarEqn.

For a list and description of the ADS Simulator Expressions, refer to Chapter 4,
Simulator Expression Reference.

Measurement Equations

The second category of equations are the ones used during simulation post
processing, known as Measurement Equations or MeasEqn for short. These are
entered into the program by means of the MeasEqn component, available on the
Simulation palettes in an Analog/RF Systems Schematic window (such as

Simulator Expressions 1-1

Introduction to Expressions and Functions

Simulation-AC or Simulation-Envelope) or from the Controllers palette in a Signal
Processing Schematic window.

Many of the more commonly used measurement items are built in, and are found in
the palettes of the appropriate simulator components. Many common expressions are
included as measurements, which makes it easy for beginning users to use the
system. To make simulation and analyses convenient, all the measurement items,
including the built-in items, can be edited to meet specific requirements. Underlying
each measurement is a function; the functions themselves are available for
modification. Moreover, it is also possible for you to write entirely new measurements
and functions.

The measurement items and their underlying expressions are based on AEL, ADS’s
Application Extension Language. Consequently, they can serve a dual purpose:

* They can be used on the schematic page, in conjunction with simulations, to
process the results of a simulation (this is useful, for example, in defining and
reaching optimization goals). The MeasEqn items are processed after the
simulation engine has finishing its task and just before the dataset is written.

¢ They can be used in the Data Display window to process the results of a dataset
that can be displayed graphically. Here the MeasEqn items are used to
post-process the data written after simulation is complete.

In either of the above cases, the same syntax is used. However, some measurements
can be used on the schematic page and not the Data Display window, and vice versa.
These distinctions will be noted where they occur.

For information on how to interpret the function descriptions found in the MeasEqn
Function Reference, see Chapter 2, Using the MeasEqn Function Reference.

For a complete list of ADS MeasEqn functions, refer to Chapter 3, MeasEqn Function
Reference.

AEL Math Functions

As stated earlier, the measurement components and their underlying expressions are
based on ADS’s Application Extension Language (AEL). AEL includes many math
functions that can be used as part of writing AEL code for various purposes. While
many of these functions overlap with the Measurement Equations, they are
documented in the AEL manual. Refer to “Math Functions” on page 9-1 in the AEL
manual for more information.

1-2 AEL Math Functions

Start Simulation

v

Evaluate Simulator
Expressions

\

Finish Simulation

v

Evaluate Measurement
Equations

v

Open Data Display

Y

Evaluate Measurement
Equations in Data Display

Figure 1-1. How ADS Evaluates and Uses Simulator Expressions and Measurement
Equations

AEL Math Functions 1-3

Introduction to Expressions and Functions

1-4 AEL Math Functions

Chapter 2: Using the MeasEqgn Function
Reference

This chapter explains how to interpret the function descriptions found in Chapter 3,
MeasEqn Function Reference.

The following figure illustrates how the measurement functions and mathematical
functions are described. In the case of AEL measurements, the entries for “Used in”
and Available as measurement component?” reads “Not applicable.”

<function name>

Purpose

States what the function does.

Synopsis

Presents the syntax of the function.

Examples

Presents typical uses of the function.

Used in

Lists applicable simulation types, if any.

Available as measurement component?

Indicates whether the measurement function is available as a
component within simulation palettes (where applicable).

Defined in

Indicates whether the measurement function is defined in a script or
is built in. All AEL functions are built in.

See also

Lists related functions, if any.

In addition, where applicable, a Description section gives detailed information about
a measurement function’s behavior, including parameter defaults and exceptions.

2-1

Using the MeasEqgn Function Reference

Where examples are available in the examples directory, they will be listed in this
section.

Manipulating Simulation Data with Equations

ADS equations are designed to manipulate data produced by the simulator.
Equations may reference any simulation output and may be placed (a) in a Data
Display window, or (b) in a Schematic window, by means of a MeasEqn (measurement
equation) component. Ready-made measurements, found in the various simulator
palettes, are simply preconfigured equations.

This description of ADS equations is accompanied by a set of example designs and
data display pages. These designs can be found in the project express_meas_prj, in
the examples / Tutorial directory.

Simulation Data

The expressions package has inherent support for two main simulation data features.
First, simulation data are normally multidimensional. Each sweep introduces a
dimension. All operators and relevant functions are designed to apply themselves
automatically over a multidimensional simulation output. Second, the independent
(swept) variable is associated with the data (for example, S-parameter data). This
independent is propagated through expressions, so that the results of equations are
automatically plotted or listed against the relevant swept variable.

Case Sensitivity

All variable names, functions names, and equation names are case sensitive in ADS
expressions.

Measurements and Expressions

Refer also to simple_meas_1.dsn in /examples |/ Tutorial | express_meas_prj/networks

Expressions are available on the schematic page by means of the MeasEqn
component. Also available in various simulation palettes are preconfigured
measurements. These are designed to help the user by presenting an initial equation,
which can be modified to suit the particular instance.

2-2 Manipulating Simulation Data with Equations

Measurements are evaluated after a simulation is run and the results are stored in
the dataset. The tag “meqn_xxx” (where xxx is a number) is placed at the beginning
of all measurement results, to distinguish those results from data produced directly
by the simulator.

Complex measurement equations are available for both circuit and signal processing
simulations. Underlying a measurement is the same generic equations handler that
is available in the Data Display window. Consequently, simulation results can be
referenced directly, and the expression syntax is identical. All operators and almost
all functions are available.

The expression used in an optimization goal or a yield specification is a measurement
expression. It may reference any other measurement on the schematic.

It is not possible to reference a VarEqn variable in a MeasEqn equation. However, a
MeasEqn equation can reference other MeasEqns, any simulation output, and any
swept variable.

Variable Names

Refer also to names_1.dsn and names_I1.dds in
/examples [Tutorial [express_meas_prj.

Variables produced by the simulator can be referenced in equations with various
degrees of rigidity. In general a variable is defined as follows:

DatasetName.AnalysisName.AnalysisType.CircuitPath.VariableName
By default, in the Data Display window a variable is commonly referenced as follows:
DatasetName..VariableName

where the double dot “..” indicates that the variable is unique in this dataset. If a
variable is referenced without a dataset name, then it is assumed to be in the current
default dataset.

When the results of several analyses are in a dataset, it becomes necessary to specify
the analysis name with the variable name. The double dot can always be used to pad
a variable name instead of specifying the complete name.

Refer also to names_2.dsn, and names_2.dds in
/examples [Tutorial [express_meas_prj.

Manipulating Simulation Data with Equations 2-3

Using the MeasEqgn Function Reference

In most cases a dataset contains results from a single analysis only, and so the
variable name alone is sufficient. The most common use of the double dot is when it is
desired to tie a variable to a dataset other than the default dataset.

Refer also to names_3.dds in /examples |/ Tutorial | express_meas_prj.

Simple Sweeps and Using “[]

Refer also to sweep_1.dsn, sweep_1.dsn and sweep_2.dds in
[examples [Tutorial [express_meas_prj.

Parameter sweeps are commonly used in simulations to generate, for example, a
frequency response or a set of DC IV characteristics. The simulator always attaches
the swept variable to the actual data (the data often being called the “attached
independent” in equations).

Often after performing a swept analysis we want to look at a single sweep point or a
group of points. The sweep indexer “[]” can be used to do this. The sweep indexer is
zero offset, meaning that the first sweep point is accessed as index 0. A sweep of n
points can be accessed by means of an index that runs from 0 to n—1. Also, the what()
function can be useful in indexing sweeps. Use what() to find out how many sweep
points there are, and then use an appropriate index. Indexing out of range yields an
invalid result.

The sequence operator can also be used to index into a subsection of a sweep. Given a
parameter X, a subsection of X may be indexed as

a=X[start::increment::stop]
Because increment defaults to one,
a=X][start::stop]
is equivalent to
a=X][start::1::stop]

The “::” operator alone is the wildcard operator, so that X and X[::] are equivalent.
Indexing can similarly be applied to multidimensional data. As will be shown later,
an index may be applied in each dimension.

2-4 Manipulating Simulation Data with Equations

S-Parameters and Matrices

Refer also to sparam_1.dsn and sparam_1.dds in
/examples [Tutorial [express_meas_prj.

As described above, the sweep indexer “[]” is used to index into a sweep. However, the
simulator can produce a swept matrix, as when an S-parameter analysis is performed
over some frequency range. Matrix entries can be referenced as S11 through Snm.
While this is sufficient for most simple applications, it is also possible to index
matrices by using the matrix indexer “()”. For example, S(1,1) is equivalent to S11.
The matrix indexer is offset by one meaning the first matrix entry is X(1,1). When it
is used with swept data its operation is transparent with respect to the sweep. Both
indexers can be combined. For example, it is possible to access S(1,1) at the first
sweep point as S(1,1)[0]. As with the sweep indexer “[]”, the matrix indexer can be
used with wildcards and sequences to extract a submatrix from an original matrix.

Matrices

Refer also to matrix_I1.dds in /examples/Tutorial/express_meas_prj.

S-parameters above are an example of a matrix produced by the simulator. Matrices
are more frequently found in signal processing applications. Mathematical operators
implement matrix operations. Element-by-element operations can be performed by
using the dot modified operators (.* and ./).

The matrix indexer conveniently operates over the complete sweep, just as the sweep
indexer operates on all matrices in a sweep. As with scalars, the mathematical
operators allow swept and nonswept quantities to be combined. For example, the first
matrix in a sweep may be subtracted from all matrices in that sweep as

Y = X-X[0]

Refer also to matrix_2.dsn and matrix_2.dds
in /examples [Tutorial | express_meas_prj.

Multidimensional Sweeps and Indexing

Refer also to multi_dim_1.dsn and multi_dim_1.dds
in /examples |/ Tutorial /| express_meas_prj.

In the previous examples we looked at single-dimensional sweeps. Multidimensional
sweeps can be generated by the simulator by using multiple parameter sweeps.

Manipulating Simulation Data with Equations 2-5

Using the MeasEqgn Function Reference

Expressions are designed to operate on the multidimensional data. Functions and
operators behave in a meaningful way when a parameter sweep is added or taken
away. A common example is DC IV characteristics.

The sweep indexer accepts a list of indices. Up to NV indices are used to index
N-dimensional data. If fewer than N lookup indices are used with the sweep indexer,
then wildcards are inserted automatically to the left. This is best explained by
referring to the above example files.

Working with Harmonic Balance (HB) Data

Refer also to Ab_1.dds
in /examples [Tutorial [express_meas_prj.

Harmonic balance analysis produces complex voltages and currents as a function of
frequency or harmonic number. A single analysis produces 1-dimensional data.
Individual harmonic components can be indexed by means of “[].” Multitone HB also
produces 1-dimensional data. Individual harmonic components can be indexed as
usual by means of “[].” However. the “mix” function provides as convenient way to
select a particular mixing component (for a list of functions, refer to List of
Functions).

Working with Transient Data

Refer also to tran_1.dsn and tran_1.dds
in /examples | Tutorial | express_meas_prj.

Transient analysis produces real voltages and currents as a function of time. A single
analysis produces 1-dimensional data. Sections of time-domain waveforms can be
indexed by using a sequence within “[1.”

Working with Envelope Data

Refer also to env_I1.dds
in /examples [Tutorial [express_meas_pryj.

Envelope analysis produces complex frequency spectra as a function of time. A single
envelope analysis can produce 2-dimensional data where the outermost independent
variable is time and the innermost is frequency or harmonic number. Indexing can be
used to look at a harmonic against time, or a spectrum at a particular time index.

2-6 Manipulating Simulation Data with Equations

if-then-else Construct

Refer also to if_then_else_I1.dds in /examples | Tutorial [express_meas_prj.

The if-then-else construct provides an easy way to apply a condition on a per-element
basis over a complete multidimensional variable. It has the following syntax:

A =if (condition) then true_expression else false_expression

Condition, true_expression, and false_expression are any valid expressions. The
dimensionality and number of points in these expressions follow the same matching
conditions required for the basic operators.

Multiple nested if-then-else constructs can also be used:

A = if (condition) then true_expression elseif (condition2) then true_expression
else false_expression

The type of the result depends on the type of the true and false expressions. The size
of the result depends on the size of the condition, the true expression, and the false
expression.

The if-then-else construct can be used in a MeasEqn component on a schematic. It
has the following syntax:

A = if (condition) then true_expression else false_expression

Generating Data

Refer also to gen_1.dds
in /examples |/ Tutorial | express_meas_prj.

The simulator produces scalars and matrices. When a sweep is being performed it
can produce scalars and matrices as a function of a set of swept variables. It is also
possible to generate data by using expressions. Two operators can be used to do this.
The first is the sweep generator “[],” and the second is the matrix generator “{ }.”
These operators can be combined in various ways to produce swept scalars and
matrices. The data can then be used in the normal way in other expressions. The
operators can also be used to concatenate existing data, which can be very useful
when combined with the indexing operators.

Manipulating Simulation Data with Equations 2-7

Using the MeasEqn Function Reference

Operator Precedence

Expressions are evaluated from left to right, unless there are parentheses. Operators
are listed from higher to lower precedence. Operators on the same line have the same
precedence. For example, a+b*c means a+(b*c), because * has a higher precedence
than +. Similarly, a+b-c means (a+b)—c, because + and — have the same precedence
(and because + is left-associative).

The operators !, &&, and || work with the logical values. The operands are tested for
the values TRUE and FALSE, and the result of the operation is either TRUE or
FALSE. In AEL a logical test of a value is TRUE for non-zero numbers or strings with
non-zero length, and FALSE for 0.0 (real), 0 (integer), NULL or empty strings. Note
that the right hand operand of && is only evaluated if the left hand operand tests
TRUE, and the right hand operand of | | is only evaluated if the left hand operand
tests FALSE.

The operators >=, <=, >, <, ==, !=, AND, OR, EQUALS, and NOT EQUALS also
produce logical results, producing a logical TRUE or FALSE upon comparing the
values of two expressions. These operators are most often used to compare two real
numbers or integers. These operators operate differently in AEL than C with string
expressions in that they actually perform the equivalent of strecmp() between the first
and second operands, and test the return value against 0 using the specified operator.

Table 2-1. Operator Precedence

Operator Name Example

() function call, matrix indexer foo(expr_list)
X(expr,expr)

[1 sweep indexer, sweep generator X[expr_list]
[expr_list]

{} matrix generator {expr_list}

*x exponentiation expr*expr

! not lexpr

* multiply expr * expr

/ divide expr / expr

* element-wise multiply expr .* expr

A element-wise divide expr ./ expr

+ add expr + expr

- subtract expr - expr

2-8 Manipulating Simulation Data with Equations

Table 2-1. Operator Precedence (continued)

Operator Name Example
sequence operator exp::expr::expr
wildcard start::inc::stop

< less than expr < expr

<= less than or equal to expr <= expr
> greater than expr > expr

>= greater than or equal to expr >= expr
== equal expr == expr
1= not equal expr != expr

&& logical and expr && expr

Il logical or expr || expr

Built-in Constants

The following constants can be used in expressions.
Table 2-2. Built-in Constants

Constant |Description Value
Pl (also pi) |p 3.1415926535898
e Euler’s constant 2.718281822
In10 natural log of 10 2.302585093
boltzmann |Boltzmann’s constant 1.380658e-23

J /degree K
gelectron electron charge 1.60217733e-19 C
planck Planck’s constant 6.6260755e-34 J-sec
c0 Speed of light in free space |2.99792e+08 m/sec
e0 Permittivity of free space 8.85419e-12 F/m
uo Permeability of free space 12.5664e—07 H/m
i j sqrt(-1) 1i

Manipulating Simulation Data with Equations 2-9

Using the MeasEqgn Function Reference

Budget Measurement Analysis

Budget analysis determines the signal and noise performance for elements in the
top-level design. Therefore, it is a key element of system analysis. Budget
measurements show performance at the input and output pins of the top-level system
elements. This enables the designer to adjust, for example, the gains at various
components, to reduce nonlinearities. These measurements can also indicate the
degree to which a given component can degrade overall system performance.

Budget measurements are performed upon data generated during a special mode of
circuit simulation. AC and HB simulations are used in budget mode depending upon
if linear or nonlinear analysis is needed for a system design. The controllers for these
simulations have a flag called, “OutputBudgetIV” which must be set to “yes” for the
generation of budget data. Alternatively, the flag can be set by editing the AC or HB
simulation component and selecting the “Perform Budget simulation” button on the
Parameters tab.

Budget data contains signal voltages and currents, and noise voltages at every node
in the top level design. Budget measurements are functions that operate upon this
data to characterize system performance parameters including gain, power, and noise
figure. These functions use a constant reference impedance for all nodes for
calculations. By default this impedance is 50 Ohms. The available source power at
the input network port is assumed to equal the incident power at that port.

Budget measurements are available in the schematic and the data display windows.
The budget functions can be evaluated by placing the budget components from
Simulation-AC or Simulation-HB palettes on the schematic. The results of the budget
measurements at the terminal(s) are sorted in ascending order of the component
names. The component names are attached to the budget data as additional
dependent variables. To use one of these measurements in the data display window,
first reference the appropriate data in the default dataset, and then use the equation
component to write the budget function.

Note The budget function can refer only to the default dataset, that is, the dataset
selected in the data display window.

Frequency Plan

A frequency plan of the network is determined for budget mode AC and HB
simulations. This plan tracks the reference carrier frequency at each node in a

2-10 Manipulating Simulation Data with Equations

network. When performing HB budget, there may be more than one frequency plan
in a given network. This is the case when double side band mixers are used. Using
this plan information, budget measurements are performed upon selected reference
frequencies, which can differ at each node. When mixers are used in an AC
simulation, be sure to set the “Enable AC frequency conversion” option on the
controller, to generate the correct plan.

The budget measurements can be performed on arbitrary networks with multiple
signal paths between the input and output ports. As a result, the measurements can
be affected by reflection and noise generated by components placed between the
terminal of interest and the output port on the same signal path or by components on
different signal paths.

Reflection and Backward-Traveling Wave Effects

The effects of reflections and backward-traveling signal and noise waves generated by
components along the signal path can be avoided by inserting a forward-traveling
wave sampler between the components. A forward-traveling wave sampler is an
ideal, frequency-independent directional coupler that allows sampling of
forward-traveling voltage and current waves

This sampler can be constructed using the equation-based linear three-port
S-parameter component. To do this, set the elements of the scattering matrix as
follows: S12 = S21 = S31 = 1, and all other Sij = 0. The temperature parameter is set
to -273.16 deg C to make the component noiseless. A noiseless shunt resistor is
attached to port 3 to sample the forward-traveling waves.

MeasEqgn

By placing a MeasEqn (simulation measurement equation) component on the
schematic, you can write an equation that can be evaluated, following a simulation,
and displayed in a Data Display window.

Instance Name

Displays and edits the name of the MeasEqn component. You can place more than
one MeasEqn component on the schematic.

Select Parameter

Selects an equation for editing.

Manipulating Simulation Data with Equations 2-11

Using the MeasEqgn Function Reference

Add Adds an equation to the Select Parameter field.
Cut Deletes an equation from the Select Parameter field.

Paste Copies an equation that has been cut and places it in the Select Parameter
field.

Meas

Enter your equation in this field.

Display parameter on schematic

Displays or hides a selected equation on the schematic.

Component Options

Refer to Component Options.

User-Defined Functions

By writing some AEL code, you can define your own custom functions. A file called
user_defined_fun.ael has been set aside for this purpose in the directory
expressions/ael /. By looking at the other _fun.ael files, you can see how to write your
code. You can have as many functions as you like in this one file, and they will all be
compiled upon program start-up. If you have a large number of functions to define,
you may want to organize them into more than one file. In this case, in order to have
your functions all compile, you will need to include a line such as

load("more_user_defined_fun.ael");

in the expressions_init.ael file in the same directory.

2-12 Manipulating Simulation Data with Equations

Chapter 3: MeasEqgn Function Reference

This chapter lists and describes the MeasEqn functions that are available within the
Advanced Design System. These functions include mathematical functions such as
those for matrix conversion, trigonometry, absolute value, and the like. They also
include functions specific to simulation, such as S-parameter functions and budget
measurement components.

The tables in this chapter indicate whether or not a function is available as a built-in
measurement from a palette in the design window. Although they have been designed
to make simulation convenient, the built-in measurement items can also be edited by
the user to meet specific requirements.

For more information on how to interpret this material, see Chapter 2, Using the
MeasEqn Function Reference.

3-1

MeasEqn Function Reference

abcdtoh
Purpose
Performs ABCD-to-H conversion
Synopsis
abedtoh(A)
where A is the chain (ABCD) matrix of a 2-port network.
Examples
h=abcdtoh(a)
Used in
Small-signal and large-signal S-parameter simulations.

Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no

explicit measurement component.
Defined in

AEL, network_fun.ael

See also

htoabed, abedtoh, abedtoz

Description

This measurement transforms the chain (ABCD) matrix of a 2-port network to a

hybrid matrix.

3-2

abcdtos

Purpose

Performs ABCD-to-S conversion
Synopsis

abedtos(A, zRef)

where A is the chain (ABCD) matrix of a 2-port network and zRef is a reference
impedance.

Examples

s=abcdtos(a, 50)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoabcd, abedtoy, abedtoz
Description

This measurement transforms the chain (ABCD) matrix of a 2-port network to a
scattering matrix.

3-3

MeasEqn Function Reference

abcdtoy
Purpose
Performs ABCD-to-Y conversion
Synopsis
abedtoy(A)
where A is the chain (ABCD) matrix of a 2-port network.
Examples
y = abedtoy(a)
Used in
Small-signal and large-signal S-parameter simulations

Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param.
Simulation and LSSP Simulation palettes in the Schematic window. There is no

explicit measurement component.
Defined in

AEL, network_fun.ael

See also

ytoabced, abedtoz, abedtoh

Description

This measurement transforms the chain (ABCD) matrix of a 2-port network to an

admittance matrix.

3-4

abcdtoz
Purpose
Performs ABCD-to-Z conversion
Synopsis
abedtoz(A)
where A is the chain (ABCD) matrix of a 2-port network.
Examples
z = abedtoz(a)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

ztoabed, abcdtoy, abedtoh
Description

This measurement transforms the chain (ABCD) matrix of a 2-port network to
impedance matrix.

3-5

MeasEqn Function Reference

abs

Returns the absolute value of a real number or an integer. In the case of a complex
number, the abs function:

* accepts one complex argument.
* returns a positive real number.
* returns the magnitude of its complex argument.
Synopsis
y = abs(x)
where x is an integer or real number.
Examples

a = abs(-45)
returns 45

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cint, exp, float, int, log, log10, pow, sgn, sqrt

3-6

acos
Purpose
Returns the inverse cosine, or arc cosine, in radians, of a real number or integer
Synopsis
y = acos(x)
where x is an integer or real number, and y ranges from 0 to pi.
Examples

a = acos(-1)
returns 3.142

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

asin, atan, atan2

3-7

MeasEqn Function Reference

acpr_vi

Purpose

Computes the adjacent-channel power ratio following a Circuit Envelope simulation
Synopsis

ACPRvals=acpr_vi(voltage, current, mainCh, lowerAdjCh, upperAdjCh, winType,
winConst)

where

voltage is the single complex voltage spectral component (for example, the
fundamental) across a load versus time;

current is the single complex current spectral component into the same load
versus time;

mainCh is the two-dimensional vector defining the main channel frequency limits
(as an offset from the single voltage and current spectral component);

lowerAdjCh is the two-dimensional vector defining the lower adjacent-channel
frequency limits (as an offset from the single voltage and current spectral
component);

upperAdjCh is the two-dimensional vector defining the upper adjacent channel
frequency limits (as an offset from the single voltage and current spectral
component);

winType is an optional window type and must be one of the following: Kaiser,
Hamming, Gaussian, 8510, or NoWindow (leaving this field blank is the
equivalent of NoWindow); and

winConst is an optional parameter that affects the shape of the applied window.
The default window constants are:

Kaiser: 7.865
Hamming: 0.54
Gaussian: 0.75

8510: 6 (The 8510 window is the same as a Kaiser window with a window
constant of 6.)

3-8

Examples
Example equations

VloadFund = vload[1]

IloadFund = iload.i[1]

mainlimits = {-16.4 kHz, 16.4 kHz}

UpChlimits = {mainlimits + 30 kHz}

LoChlimits = {mainlimits — 30 kHz}

TransACPR = acpr_vi(VloadFund, IloadFund, mainlimits, LoChlimits, UpChlimits,
"Kaiser")

where vload is the named connection at a load, and iload.i is the name of the
current probe that samples the current into the node. The {} braces are used to
define vectors, and the upper channel limit and lower channel limit frequencies do
not need to be defined by means of the vector that defines the main channel limits.

Example file
examples/RF_Board/NADC_PA_prj/NADC_PA_ACPRtransmitted.dds
Used in

Adjacent-channel power computations

Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit ACPR measurement
function.

Defined in

hpeesof/expressions/ael/digital_wireless_fun.ael

See also

acpr_vr, channel_power_vi, channel_power_vr, relative_noise_bw
Description

The user must supply a single complex voltage spectral component (for example, the
fundamental) across a load versus time and a single complex current spectral
component into the same load. The user must also supply the upper and lower
adjacent-channel and main-channel frequency limits, as offsets from the spectral
component frequency of the voltage and current. These frequency limits must be

3-9

MeasEqn Function Reference

entered as two-dimensional vectors. An optional window and window constant may
also be supplied, for use in processing nonperiodic data.

3-10

acpr_vr
Purpose
Computes the adjacent-channel power ratio following a Circuit Envelope simulation
Synopsis

ACPRvals=acpr_vr(voltage, resistance, mainCh, lowerAdjCh, upperAdjCh, winType,
winConst)

where

voltage is the single complex voltage spectral component (for example, the
fundamental) across a resistive load versus time;

resistance is the load resistance in ohms (default is 50 ohms);

mainCh is the two-dimensional vector defining the main-channel frequency limits
(as an offset from the single voltage and current spectral component);

lowerAdjCh is the two-dimensional vector defining the lower adjacent-channel
frequency limits (as an offset from the single voltage spectral component);

upperAdjCh is the two-dimensional vector defining the upper adjacent-channel
frequency limits (as an offset from the single voltage spectral component);

winType is an optional window type and must be one of the following: Kaiser,
Hamming, Gaussian, 8510, or NoWindow (leaving this field blank is the
equivalent of NoWindow); and

winConst is an optional parameter that affects the shape of the applied window.
The default window constants are:

Kaiser: 7.865
Hamming: 0.54
Gaussian: 0.75

8510: 6 (The 8510 window is the same as a Kaiser window with a window
constant of 6.)

Examples
Example equations

Vfund = vOut[1]
mainlimits = {—(1.2288 MHz/2), (1.2288 MHz/2)}

3-11

MeasEqn Function Reference

UpChlimits = {885 kHz, 915 kHz}
LoChlimits = {-915 kHz, —-885 kHz}
TransACPR = acpr_vr(VloadFund, 50, mainlimits, LoChlimits, UpChlimits, "Kaiser")

where vOut is the named connection at a resistive load. The {} braces are used to
define vectors.

Note vOut is a named connection on the schematic. Assuming that a Circuit
Envelope simulation was run, vOut is output to the dataset as a two-dimensional
matrix. The first dimension is time, and there is a value for each time point in the
simulation. The second dimension is frequency, and there is a value for each
fundamental frequency, each harmonic, and each mixing term in the analysis, as well
as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the lowest
non-baseband frequency (the fundamental analysis frequency, unless a multitone
analysis has been run and there are mixing products). For former MDS users, the
notation "vOut[*, 2]" in MDS corresponds to the ADS notation of "vOut[1]".

Example file
examples/Tutorial/ModSources_prj/IS95RevLinkSrc.dds
Used in

Adjacent-channel power computations

Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit ACPR measurement
function.

Defined in
hpeesof/expressions/ael/digital_wireless_fun.ael
See also

acpr_vi, channel_power_vi, channel_power_vr, relative_noise_bw

3-12

Description

The user must supply a single complex voltage spectral component (for example, the
fundamental) across a resistive load versus time and the load resistance. The user
must also supply the upper and lower adjacent-channel and main-channel frequency
limits, as offsets from the spectral component frequency of the voltage. These
frequency limits must be entered as two-dimensional vectors. An optional window
and window constant may also be supplied, for use in processing nonperiodic data.

3-13

MeasEqn Function Reference

add_rf
Purpose

Returns the sum of two Timed Complex Envelope signals defined by the triplet
in-phase (real or I(t)) and quadrature-phase (imaginary or Q(t)) part of a modulated
carrier frequency(Fc)

Synopsis
y = add_rf(T1, T2)

where T1 and T2 are two Timed Complex Envelope signals at two distinct carrier
frequencies Fcl and Fc2.

Examples

y=add_rf(T1, T2)

Used in

Signal processing designs that output Timed Signals using Timed Sinks
Available as measurement component?
Not applicable

Defined in

AEL, signal_proc_fun.ael

See also

Not applicable

Description

This equation determines the sum of two Timed Complex Envelope at a new carrier
frequency Fc3. Given Fcl and Fe2 as the carrier frequencies of the two input
waveforms, the output carrier frequency Fc3 will be the greater of the two.

3-14

asin
Purpose
Returns the inverse sine, or arc sine, in radians, of a real number or integer
Synopsis
y = asin(x)

where x is an integer or real number and y ranges from —pi/2 to pi/2.
Examples

a = asin(-1)
returns -1.571

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

acos, atan, atan2

3-15

MeasEqn Function Reference

atan
Purpose
Returns the inverse tangent, or arc tangent, in radians, of a real number or integer
Synopsis
y = atan(x)
where x is a real number or integer and y ranges from -pi/2 to pi/2.
Examples

a = atan(-1)
returns —0.785

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

acos, asin, atan2

3-16

atan2

Purpose

Returns the inverse tangent, or arc tangent, of the rectangular coordinates y and x
Synopsis

w= atan2(y, x)

where y and x are integer or real number coordinates, and w ranges from —pi to pi.
atan2(0, 0) defaults to —pi/2.

Examples

a = atan2(1, 0)
returns 1.571

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

acos, asin, atan

3-17

MeasEqn Function Reference

ber_pi4dqgpsk
Purpose

Returns the symbol probability of error versus signal-to-noise ratio per bit for
pi/4 DQPSK modulation

Synopsis

data = ber_pi4ddqpsk(vIin, vOut, symRate, noise{, samplingDelay, rotation, tranDelay,
pathDelay})

where

vin and vOutare the complex envelope voltage signals at the input and output
nodes, respectively, symRatds the symbol rate (real) of the modulation signal, and
noiseis the RMS noise vector.

The remaining arguments are optional and will be calculated if not specified by
the user: pathDelayis the delay from input to output in seconds, rotation is the
carrier phase in radians, and samplirgDelayis the clock phase in seconds.

tranDelayis an optional time in seconds that causes this time duration of symbols
to be eliminated from the bit error rate calculation. Usually the filters in the
simulation have transient responses, and the bit error rate calculation should not
start until these transient responses have finished.

Note that ber_pi4dqpsk returns a list of data:
data[0]= symbol probability of error versus Eb / NO
data[1]= path delay in seconds
data[2]= carrier phase in radians
data[3]= clock phase in seconds
data[4]= complex(Isample, Qsample)

Examples

y= ber_piddqpsk(videal[1], vout[1], 0.5e6, {0.1::-0.01::0.02})
Used in

Circuit Envelope simulation, Data Flow simulation
Available as measurement component?

Not applicable

3-18

Defined in

AEL, digital_wireless_fun.ael
See also

ber_qpsk, constellation
Description

The arguments vin and vOut usually come from a circuit envelope simulation, while
noiseusually comes from a harmonic balance simulation, and is assumed to be
additive white Gaussian. It can take a scalar or vector value. The function uses the
quasi-analytic approach for estimating BER: for each symbol, Eb / NO and BER are
calculated analytically; then the overall BER is the average of the BER values for the
symbols.

3-19

MeasEqn Function Reference

ber_gpsk
Purpose

Returns the symbol probability of error versus signal-to-noise ratio per bit for QPSK
modulation

Synopsis

data = ber_qpsk(vIn, vOut, symRate, noise{, samplingDelay, rotation, tranDelay,
pathDelay})

where

vin and vOutare the complex envelope voltage signals at the input and output
nodes, respectively, symRatds the symbol rate (real) of the modulation signal, and
noiseis the RMS noise vector.

The remaining arguments are optional and will be calculated if not specified by
the user: pathDelayis the delay from input to output in seconds, rotation is the
carrier phase in radians, and samplirgDelayis the clock phase in seconds.

tranDelayis an optional time in seconds that causes this time duration of symbols
to be eliminated from the bit error rate calculation. Usually the filters in the
simulation have transient responses, and the bit error rate calculation should not
start until these transient responses have finished.

Note that ber_qpsk returns a list of data:
data[0]= symbol probability of error versus Eb / NO
data[1]= path delay in seconds
data[2]= carrier phase in radians
data[3]= clock phase in seconds
data[4]= complex(Isample, Qsample)
Examples
y= ber_qpsk(videal[1], vout[1], 1e6, {0.15::-0.01::0.04})
Used in
Circuit Envelope simulation, Data Flow simulation
Available as measurement component?

Not applicable

3-20

Defined in

AEL, digital_wireless_fun.ael
See also

ber_pi4dqpsk, constellation
Description

The arguments vin and vOutusually come from a circuit envelope simulation, while
noiseusually comes from a harmonic balance simulation, and is assumed to be
additive white Gaussian. It can take a scalar or vector value. The function uses the
quasi-analytic approach for estimating BER: for each symbol, Eb / NO and BER are
calculated analytically; then the overall BER is the average of the BER values for the
symbols.

3-21

MeasEqn Function Reference

bud_freq

Purpose

Returns the frequency plan of a network
Synopsis

bud_freq({freqIn, pinNumber, “simName”})
or

bud_freq(planNumber{, pinNumber})

This function is used in AC and HB simulations with the budget parameter turned
on. For AC, the options are to pass no parameters, or the input source frequency
freqln, for the first parameter if a frequency sweep is performed. freqIn can still be
passed if no sweep is performed, table data is just formatted differently. The first
argument must be a real number for AC data and the second argument is an integer,
used optionally to choose pin references.

Note To use bud_freq() in AC simulation, the AC controller FreqConversion flag
must be set to “yes”.

When using this function with HB data, the planNumber is required. The
planNumber is an integer which represents the chosen frequency plan.

For both analyses, the second parameter is the pinNumber, which is used to choose
which pins of each network element are referenced. If 1 is passed as the pinNumber,
the frequency plan displayed references pin 1 of each element; otherwise, the
frequency plan is displayed for all pins of each element. (Note that this means it is
not possible to select only pin 2 of each element, for example.) By default, the
frequency plan is displayed for pin 1 of each element.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to qualify
the data when multiple simulations are performed.

Examples

x = bud_freq()
Returns frequency plan for AC analysis.

x = bud_freq(1MHz)
Returns frequency plan for frequency swept AC analysis. By passing the value of

3-22

1MHz the plan is returned for the subset of the sweep, when the source value is
1MHz

x = bud_freq(2)
For HB, returns a selected frequency plan, 2, with respect to pin 1 of every network
element.

Used in

AC and harmonic balance simulations
Available as measurement component?
BudFreq

Defined in

AEL, budget_fun.ael

See also

Not applicable

Description

When a frequency sweep is performed in conjunction with AC, the frequency plan of a
particular sweep point can be chosen.

For HB, this function determines the fundamental frequencies at the terminal(s) of
each component, thereby given the entire frequency plan for a network. Sometimes
more than one frequency plan exists in a network. For example when double
sideband mixers are used. This function gives the user the option of choosing the
frequency plan of interest.

Note that a negative frequency at a terminal means that a spectral inversion has
occurred at the terminal. For example, in frequency-converting AC analysis, where
vIn and vOut are the voltages at the input and output ports, respectively, the relation
may be either vOut=alpha*vIn if no spectral inversion has occurred, or
vOut=alpha*conj(vIn) if there was an inversion. Inversions may or may not occur
depending on which mixer sidebands one is looking at.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-23

MeasEqn Function Reference

bud_gain

Purpose

Returns budget transducer-power gain

Synopsis

bud_gain(vIn, iIn{, Zs, Plan, pinNumber, “simName”})

or

bud_gain(“SourceName”, {SrcIndx, Zs, Plan})

where vIn and iln are the input voltage and the input current (flowing into the
input port), respectively. “SourceName” is the component name at the input port,
and SrcIndx is the frequency index that corresponds to the source frequency to
determine which frequency to use from a multitone source as the reference signal.
The input source port impedance Zs is an optional parameter. If not specified, Zs is
set to 50.0 ohms. Plan is the number of the selected frequency plan, which is only
needed for HB.

Note that for AC simulation, both the SrcIndx and Plan arguments must not be
specified; these are for HB only.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Examples
x = bud_gain(PORT1.t1.v, PORT1.t1.i)

or

x = bud_gain(“PORT1”)

y= bud_gain(PORT1.t1.v, PORT1.t1.i, 75)

or

y= bud_gain(“PORT1”, , 75., 1)

3-24

z = bud_gain(PORT1.t1.v[3], PORT1.t1.i[3],, 1)
or

z= bud_gain(“PORT1”, 3, , 1)

Used in

AC and harmonic balance simulations
Available as measurement component?
BudGain

Defined in

AEL, budget_fun.ael

See also

bud_gain_comp

Description

This is the power gain (in dB) from the input port to the terminal(s) of each
component, looking into that component. Power gain is defined as power delivered to
the resistive load minus the power available from the source. Note that the
fundamental frequency at different pins can be different. If vIn and iln are passed
directly, one may want to use the index of the frequency sweep explicitly to reference
the input source frequency.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-25

MeasEqn Function Reference

bud_gain_comp

Purpose

Returns budget gain compression at fundamental frequencies as a function of power
Synopsis

bud_gain_comp(vIn, iIn{, Zs, Plan, freqIndex, pinNumber, “simName”})

or

bud_gain_comp(“SourceName”, SrcIndx{, Zs, Plan, freqIndex, pinNumber,
“simName”})

where vIn and iln are the input voltage and the input current (flowing into the
input port), respectively. SrcIndx is the frequency index that corresponds to the
source frequency to determine which frequency to use from a multitone source as
the reference signal. Zs is an optional input port impedance whose default value is
50.0 ohms. Plan is the number of the selected frequency plan, which is only needed
for HB.

If Plan is not selected, the gain compression is calculated at the harmonic
frequency selected by freqIndex

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_gain_comp(PORT1.t1.v[3], PORT1.t1.i[3],, 1)
x = bud_gain_comp(“PORT1”, 3, , 1)
returns the gain compression at the fundamental frequencies as a function of power.

y= bud_gain_comp(PORT1.t1.v[3], PORT1.t1.i[3],,, 1)

y= bud_gain_comp(“PORT1”, 3, ,, 1)

returns the gain compression at the second harmonic frequency as a function of
power.

Used in

Harmonic balance simulation with sweep

3-26

Available as measurement component?
BudGainComp

Defined in

AEL, budget_fun.ael

See also

bud_gain

Description

This is the gain compression (in dB) at the given input frequency from the input port
to the terminal(s) of each component, looking into that component. Gain compression
is defined as the small signal linear gain minus the large signal gain. Note that the
fundamental frequency at each element pin can be different by referencing the
frequency plan. A power sweep of the input source must be used in conjunction with
HB. The first power sweep point is assumed to be in the linear region of operation.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-27

MeasEqn Function Reference

bud_gamma

Purpose

Returns the budget reflection coefficient

Synopsis

bud_gamma({Zref, Plan, pinNumber, “simName”})

where Zref is the reference impedance, set to 50.0 ohms by default. Plan is the
number of the selected frequency plan, which is only needed for HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Examples

x = bud_gammal()
returns reflection coefficient at all frequencies.

y = bud_gamma(75, 1)
returns reflection coefficient at reference frequencies in plan 1

Used in

AC and harmonic balance simulations
Available as measurement component?
BudGamma

Defined in

AEL, budget_fun.ael

See also

bud_vswr

Description

This is the complex reflection coefficient looking into the terminal(s) of each
component. Note that the fundamental frequency at different pins can in general be

3-28

different, and therefore values are given for all frequencies unless a Plan is
referenced.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-29

MeasEqn Function Reference

bud_ip3_deg

Purpose

Returns the budget third-order intercept point degradation
Synopsis

bud_ip3_deg(vOut, LinearizedElement, fundFreq, imFreq{, zRef})

where vOut is the signal voltage at the output, LinearizedElement is the variable
containing the names of the linearized components, fundFreq and imFreq are the
harmonic frequency indices for the fundamental and intermodulation frequencies,
respectively, and zRef is the reference impedance, set to 50.0 ohms by default.

Example

y=bud_ip3_deg(vOut, LinearizedElement, {1, 0}, {2, —1})
returns the budget third-order intercept point degradation

Used in

Harmonic balance simulation with the BudLinearization Controller
Available as measurement component?

BudIP3Deg

Defined in

AEL, budget_fun.ael

See also

ip3_out, ipn

Description

This measurement returns the budget third-order intercept point degradation from
the input port to any given output port. It does this by setting to linear each
component in the top-level design, one at a time.

For the components that are linear to begin with, this measurement will not yield
any useful information. For the nonlinear components, however, this measurement
will indicate how the nonlinearity of a certain component degrades the overall system
IP3. To perform this measurement, the BudLinearization Controller needs to be
placed in the schematic window. If no component is specified in this controller, all
components on the top level of the design are linearized one at a time, and the budget
IP3 degradation is computed.

3-30

bud_nf

Purpose

Returns the budget noise figure

Synopsis

bud_nf(vIn, iIn, noisevIn{, Zs, BW, pinNumber, “simName”})
or

bud_nf(“SourceName”)

where vIn, iIn, and noisevIn are the signal voltage and current (flowing into the
input port) and the noise voltage at the input port, respectively. The input port
impedance and the bandwidth are optional parameters. If not specified, Zs and BW
are set to 50.0 ohms and 1 Hz, respectively. BW must be set as the value of
Bandwidth used on the noise page of the AC controller.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_nf(PORT1.tl.v, PORT1.t1.i, PORT1.t1.v.noise)
x = bud_nf(“PORT1”)

Used in

AC simulation

Available as measurement component?
BudNF.

Defined in

AEL, budget_fun.ael

See also

bud_nf_deg, bud_tn

3-31

MeasEqn Function Reference

Description

This is the noise figure (in dB) from the input port to the terminal(s) of each
component, looking into that component. The noise analysis control parameters in
the AC Simulation component must be selected: “Calculate Noise” and “Include port
noise”. For the source, the parameter “Noise” should be set to yes. The noise figure is
always calculated per IEEE standard definition with the input termination at 290 K.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-32

bud_nf deg

Purpose

Returns budget noise figure degradation

Synopsis

bud_nf_deg(vIn, iIn, vOut, iOut, vOut.NC.vnc, vOut.NC.name{, Zs, BW})
or

bud_nf_deg(“PORT1”, “Term1”, “vOut”)

where vIn and iln are the voltage and current at the input port, and vOut and
iOut are the voltage and current at the output port. vOut.NC.vnc and
vOut.NC.name are the noise contributions and the corresponding component
names at the output port, respectively. The input port impedance, bandwidth, and
temperature are optional parameters.

If not specified, Zs and BW are set to 50.0 ohms and 1 Hz, respectively. BW must
be set as the value of Bandwidth used on the noise page of the AC controller.

Example

x = bud_nf_deg(PORT1.tl.v, PORT1.t1.i, Term1.t1.v, Term1.t1.i, vOut.NC.vnc,
vOut.NC.name)

x = bud_nf_deg(“PORT1”, "Term1”, “vOut”)
Used in

AC simulation

Available as measurement component?
BudNFDeg

Defined in

AEL, budget_fun.ael

See also

bud_nf, bud_tn

Description

The improvement of system noise figure is given when each element is made
noiseless. This is the noise figure (in dB) from the source port to a specified output

3-33

MeasEqn Function Reference

port, obtained while setting each component noiseless, one at a time. The noise
analysis and noise contribution control parameters in the AC Simulation component
must be selected. For noise contribution, the output network node must be labeled
and referenced on the noise page in the AC Controller. Noise contributors mode
should be set to “Sort by Name.” The option “Include port noise “on the AC Controller
should be selected. For the source, the parameter “Noise” should be set to yes. For
this particular budget measurement the AC controller parameter “OutputBudgetIV”
can be set to no. The noise figure is always calculated per IEEE standard definition
with the input termination at 290 K.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-34

bud_noise_pwr

Purpose

Returns the budget noise power

Synopsis

bud_noise_pwr({Zref, Plan, pinNumber, “simName”})

where Zref is the reference impedance and Plan is the number of the selected
frequency plan, which is only needed for HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_noise_pwr()
returns the noise power at all frequencies

y = bud_noise_pwr(75, 1)
returns the noise power at reference frequencies in plan 1

Used in

AC and harmonic balance simulations
Available as measurement component?
BudNoisePwr

Defined in

AEL, budget_fun.ael

See also

bud_pwr

Description

This is the noise power (in dBm) at the terminal(s) of each component, looking into
the component. If Zref is not specified, the impedance that relates the signal volatage
and current is used to calculate the noise power. Note that the fundamental

3-35

MeasEqn Function Reference

frequency at different pins can be different, and therefore values are given for all
frequencies unless a Plan is referenced.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-36

bud_pwr

Purpose

Returns the budget signal power in dBm
Synopsis

bud_pwr({Plan, pinNumber, “simName”})

where Plan is the number of the selected frequency plan, which is only needed for
HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_pwr()
returns the signal power at all frequencies when used in AC or HB simulations

y = bud_pwr(50, 1)
returns the signal power at reference frequencies in plan 1 when used for HB
simulations

Used in

AC and harmonic balance simulations
Available as measurement component?
Not applicable

Defined in

AEL, budget_fun.ael

See also

bud_noise_pwr

Description

This is the signal power (in dBm) at the terminal(s) of each component, looking into
the component. Note that the fundamental frequency at different pins can be

3-37

MeasEqn Function Reference

different, and therefore values are given for all frequencies unless a Plan is
referenced.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-38

bud_pwr_inc

Purpose

Returns the budget incident power

Synopsis

bud_pwr_inc({Zref, Plan, pinNumber, “simName”})

where Zref is the reference impedance, set to 50.0 ohms by default. Plan is the
number of the selected frequency plan, which is only needed for HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_pwr_inc()
returns incident power at all frequencies

y = bud_pwr_inc(75, 1)
returns incident power at reference frequencies in plan 1

Used in

AC and harmonic balance simulations
Available as measurement component?
BudPwrlnc

Defined in

AEL, budget_fun.ael

See also

bud_pwr_refl

Description

This is the incident power (in dBm) at the terminal(s) of each component, looking into
the component. Note that the fundamental frequency at different pins can be

3-39

MeasEqn Function Reference

different, and therefore values are given for all frequencies unless a Plan is
referenced.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-40

bud_pwr_refl

Purpose

Returns the budget reflected power

Synopsis

bud_pwr_refl({Zref, Plan, pinNumber, “simName”})

where Zref is the reference impedance, set to 50.0 ohms by default. Plan is the
number of the selected frequency plan, which is only needed for HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_pwr_refl()
returns reflected power at all frequencies

y = bud_pwr_refl(75, 1)
returns reflected power at reference frequencies in plan 1

Used in

AC and Harmonic balance simulations
Available as measurement component?
BudPwrRefl

Defined in

AEL, budget_fun.ael

See also

bud_pwr_inc

Description

This is the reflected power (in dBm) at the terminal(s) of each component, looking
into the component. Note that the fundamental frequency at different pins can be

3-41

MeasEqn Function Reference

different, and therefore values are given for all frequencies unless a Plan is
referenced.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-42

bud_snr

Purpose

Returns the budget signal-to-noise-power ratio
Synopsis

bud_snr({Plan, pinNumber, “simName”})

where Plan is the number of the selected frequency plan, which is only needed for
HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_snr()

returns the SNR at all frequencies
or

y = bud_snr(1)
returns the SNR at reference frequencies in plan 1

Used in

AC and harmonic balance simulations
Available as measurement component?
BudSNR

Defined in

AEL, budget_fun.ael

See also

Not applicable

3-43

MeasEqn Function Reference

Description

This is the SNR (in dB) at the terminal(s) of each component, looking into that
component. Note that the fundamental frequency at different pins can in general be
different, and therefore values are given for all frequencies unless a Plan is
referenced. The noise analysis control parameter in the AC and Harmonic Balance
Simulation components must be selected. For the AC Simulation component select:
“Calculate Noise” and “Include port noise.” For the source, the parameter “Noise”
should be set to yes. In Harmonic Balance select the “Nonlinear noise” option.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-44

bud_tn

Purpose

Returns the budget equivalent output-noise temperature
Synopsis

bud_tn(vIn, iln, noisevIn{, Zs, BW, pinNumber, “simName”})
or

bud_tn(“SourceName”)

where vIn, iIn, and noisevIn are the signal voltage and current (flowing into the
input port) and the noise voltage at the input port, respectively. The input port
impedance, the bandwidth, and the temperature are optional parameters.

If not specified, Zs and BW are set to 50.0 ohms and 1 Hz, respectively. If the
values of BW or Temp used in the simulation are different from their default
values, be sure to use their correct values in the budget function. BW must be set
as the value of Bandwidth used on the noise page of the AC controller.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_tn(PORT1.t1l.v, PORT1.t1.i, PORT1.t1.v.noise)
x = bud_tn(“PORT1”)

Used in

AC simulation

Available as measurement component?
BudTN

Defined in

AEL, budget_fun.ael

3-45

MeasEqn Function Reference

See also
bud_nf, bud_nf_deg
Description

This is an equivalent output-noise temperature (in degrees Kelvin) from the input
port to the terminal(s) of each component, looking into that component. The noise
analysis and noise contribution control parameters in the AC Simulation component
must be selected: “Calculate Noise” and “Include port noise.” For the source, the
parameter “Noise” should be set to yes. The output-noise temperature is always
calculated per IEEE standard definition with the input termination at 290 K.

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-46

bud_vswr

Purpose

Returns the budget voltage-standing-wave ratio
Synopsis

bud_vswr({Zref, Plan, pinNumber, “simName”})

where Zref is the reference impedance, set to 50.0 ohms by default. Plan is the
number of the selected frequency plan, which is only needed for HB.

pinNumber is used to choose which pins of each network element are referenced. If
1 is passed as the pinNumber, the results at pin 1 of each element are returned;
otherwise, the results for all pins of each element are returned. By default, the
pinNumber is set to 1.

“simName” is the simulation instance name, such as “AC1” or “HB1”, used to
qualify the data when multiple simulations are performed.

Example

x = bud_vswr()
returns the vswr at all frequencies

y = bud_vswr(75, 1)
returns the vswr at reference frequencies in plan 1

Used in

AC and harmonic balance simulations
Available as measurement component?
BudVSWR

Defined in

AEL, budget_fun.ael

See also

bud_gamma

Description

This is the VSWR looking into the terminal(s) of each component. Note that the
fundamental frequency at different pins can be different, and therefore values are
given for all frequencies unless a Plan is referenced.

3-47

MeasEqn Function Reference

Note Remember that the budget function can refer only to the default dataset, that
is, the dataset selected in the data display window.

3-48

carr_to_im

Purpose

Returns the ratio of carrier signal power to IMD power
Synopsis

carr_to_im(vOut, fundFreq, imFreq)

where vOut is the signal voltage at the output port, and fundFreq and imFreq are
the harmonic frequency indices for the fundamental frequency and IMD product of
interest, respectively.

Example

a = carr_to_im(out, {1, 0}, {2, —1})
Used in

Harmonic balance simulation
Available as measurement component?
CarrTolM

Defined in

AEL, rf_system_fun.ael

See also

ip3_out

Description

This measurement gives the suppression (in dB) of a specified IMD product below the
fundamental power at the output port.

3-49

MeasEqn Function Reference

cdf

Purpose

Returns the cumulative distribution function
Synopsis

cdf(data, numBins, minBin, maxBin)

where x is the signal, numBins is the number of subintervals or bins used to
measure CDF, and minBin and maxBin are the beginning and end, respectively, of
the evaluation of the CDF.

Example

cdf(data)
cdf(data, 20)

Used in
Not applicable
Available as measurement component?

This function can only be entered by means of a Eqn component in the Data Display
window. There is no measurement component in schematic window.

Defined in

AEL, statistical_fun.ael
See also

histogram, pdf, yield_sens
Description

This function measures the cumulative distribution function of a signal. The default
values for minBin and maxBin are the minimum and the maximum values of the
data, and numBins is set to log(numOfPts)/10g(2.0) by default.

3-50

cdrange

Purpose

Returns compression dynamic range
Synopsis

cdrange(nf, inpwr_lin, outpwr_lin, outpwr)

where nf'is noise figure at the output port, inpwr_lin and outpwr_lin are input and
the output power, respectively, in the linear region, and outpwr is output power at
1 dB compression.

Example

a = cdrange(nf2, inpwr_lin, outpwr_lin, outpwr)
Used in

XDB simulation

Available as measurement component?
CDRange

Defined in

AEL, rf_system_fun.ael

See also

sfdr

Description

The compressive dynamic range ratio identifies the dynamic range from the noise
floor to the 1-dB gain-compression point. The noise floor is the noise power with
respect to the reference bandwidth.

3-51

MeasEqn Function Reference

channel_power_vi
Purpose

Computes the power (in watts) in an arbitrary frequency channel following a Circuit
Envelope simulation

Synopsis
Channel_power=channel_power_vi(voltage, current, mainCh, winType, winConst)
where

voltage is the single complex voltage spectral component (for example, the
fundamental) across a load versus time;

current is the single complex current spectral component into the same load
versus time;

mainCh is the two-dimensional vector defining channel frequency limits (as an
offset from the single voltage and current spectral component (note that these
frequency limits do not have to be centered on the voltage and current spectral
component frequency);

winType is an optional window type and must be one of the following: Kaiser,
Hamming, Gaussian, 8510, or NoWindow (leaving this field blank is the
equivalent of NoWindow); and

winConst is an optional parameter that affects the shape of the applied window.
The default window constants are:

Kaiser: 7.865
Hamming: 0.54
Gaussian: 0.75

8510: 6 (The 8510 window is the same as a Kaiser window with a window
constant of 6.)

Examples
Example equations

VloadFund = vload[1]
IloadFund = iload.i[1]
mainlimits = {-16.4 kHz, 16.4 kHz}

3-52

Main_Channel_Power = channel_power_vi(VloadFund, IloadFund, mainlimits,
Kaiser)

where vload is the named connection at a load, and iload.i is the name of the
current probe that samples the current into the node. The {} braces are used to
define a vector. Note that the computed power is in watts.

Use the equation
Main_Channel_Power_dBm = 10 * log(Main_Channel_Power) + 30

to convert the power to dBm. Do not use the dBm function, which operates on
voltages.

Example file

examples/RF_Board/ NADC_PA_prj/NADC_PA_ACPRtransmitted.dds
Used in

Channel power computations

Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit channel-power
measurement function for use with Circuit Envelope data.

Defined in
hpeesof/expressions/ael/digital_wireless_fun.ael
See also

acpr_vi, acpr_vr, channel_power_vr

Description

The user must supply a single complex voltage spectral component (for example, the
fundamental) across a load versus time, and a single complex current spectral
component into the same load. The user must also supply the channel frequency
limits, as offsets from the spectral component frequency of the voltage and current.
These frequency limits must be entered as a two-dimensional vector. An optional
window and window constant may also be supplied, for use in processing nonperiodic
data.

3-53

MeasEqn Function Reference

channel_power_vr
Purpose

Computes the power (in watts) in an arbitrary frequency channel following a Circuit
Envelope simulation

Synopsis
Channel_power=channel_power_vr(voltage, resistance, mainCh, winType, winConst)
where

voltage is the single complex voltage spectral component (for example, the
fundamental) across a resistive load versus time;

resistance is the load resistance in ohms (default is 50 ohms);

mainCh is the two-dimensional vector defining channel frequency limits (as an
offset from the single voltage and current spectral component (note that these
frequency limits do not have to be centered on the voltage and current spectral
component frequency);

winType is an optional window type and must be one of the following: Kaiser,
Hamming, Gaussian, 8510, or NoWindow (leaving this field blank is the
equivalent of NoWindow); and

winConst is an optional parameter that affects the shape of the applied window.
The default window constants are:

Kaiser: 7.865
Hamming: 0.54
Gaussian: 0.75

8510: 6 (The 8510 window is the same as a Kaiser window with a window
constant of 6.)

Example
Example equations

Vmain_fund = Vmain[1]
mainlimits = {~16.4 kHz, 16.4 kHz}
Main_Channel_Power = channel_power_vr(Vmain_fund, 50, mainlimits, Kaiser)

3-54

where Vmain is the named connection at a resistive load (50 ohms in this case.)
The {} braces are used to define a vector. Note that the computed power is in watts.
Use the equation

Main_Channel_Power_dBm = 10 * log(Main_Channel_Power) + 30

to convert the power to dBm. Do not use the dBm function, which operates on
voltages.

Example file
examples/RF_Board/NADC_PA_prj/NADC_PA_ACPRreceived.dds
Used in

Channel power computations

Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit channel-power
measurement function for use with Circuit Envelope data.

Defined in
hpeesof/expressions/ael/digital_wireless_fun.ael
See also

acpr_vi, acpr_vr, channel_power_vi

Description

The user must supply a single complex voltage spectral component (for example, the
fundamental) across a load versus time and the resistance of the load. The user must
also supply the channel frequency limits, as offsets from the spectral component
frequency of the voltage. These frequency limits must be entered as a
two-dimensional vector. An optional window and window constant may also be
supplied, for use in processing nonperiodic data.

3-55

MeasEqn Function Reference

chop

Purpose

Replace numbers in x with magnitude less than dx with 0
Synopsis

y=chop(x{, dx})

then y= x if mag(x)>=mag(dx)

and y=0 if mag(x)<mag(dx)

dx is optional, default is 1e-10.

Actually this function is more complicated; it acts independently on the real and
complex components of x, comparing each to mag(dx)

Example

chop(1)
1

chop(le-12)
0

chop(1+1e-12i)
1+0i

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

AEL, elementary_fun.ael

See also

None

3-56

chr
Purpose
Returns the character representation of an integer
Synopsis
y = chr(x)

where x is a valid ASCII string representing a character.
Examples

a = chr(64)
“@”

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

Not applicable

3-57

MeasEqn Function Reference

circle
Purpose

Used to draw a circle on a Data Display page. Accepts the arguments center, radius,
and number of points. Can only be used on polar plots and Smith charts.

Synopsis
a = circle(x, y, z)

where x is the center coordinate (can be a complex number), y is the radius, and z
is the number of points

Examples

x = circle(1,1,500)

y = circle(1+j*1,1,500)

Used in

Data Display

Available as measurement component?
Not applicable

Defined in

AEL

See also

Not applicable

3-58

cint

Purpose

Given a noninteger real number, returns a rounded integer
Synopsis

y = cint(x)

where x is a real number to be rounded to an integer.

Note 0.5 rounds up, —0.5 rounds down (up in magnitude).

Examples

a = cint(45.6)
46

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, exp, float, int, log, log10, pow, sgn, sqrt

3-59

MeasEqn Function Reference

cmplx
Purpose

Given two real numbers representing the real and imaginary components of a
complex number, returns a complex number

Note Use the real and imag functions to retrieve the real and imaginary
components, respectively. The basic math functions operate on complex numbers.

Synopsis
y = cmplx(x, y)

where x is the real component and y is the imaginary component.
Examples

a = cmplx(2, —-1)
2-1j

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

imag, real

3-60

conj

Purpose

Returns the conjugate of a complex number

Synopsis
y = conj(x)

where x is a complex number.
Examples

a = conj(3—4%j)
3.000 + j4.000
or 5.000 / 53.130 in magnitude / degrees

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

mag

3-61

MeasEqn Function Reference

const_evm
Purpose

Takes the results of a Circuit Envelope simulation and generates the ideal and
distorted constellation and trajectory diagrams, as well as the error vector
magnitude, in percent, and a plot of the error vector magnitude versus time

Synopsis

data = const_evm(vfund_ideal, vfund_dist, symbol_rate, sampling_delay, rotation,
transient_duration, path_delay)

where

vfund_ideal is a single complex voltage spectral component (for example the
fundamental) that is ideal (undistorted). This could be constructed from two
baseband signals instead, by using the function cmplx()].

vfund_dist is a single complex voltage spectral component (for example, the
fundamental) that has been distorted by the network being simulated. This could
be constructed from two baseband signals instead, by using the function cmplx().

symbol_rate is the symbol rate of the modulation signal.

sampling_delay (if nonzero) throws away the first delay = N seconds of data from
the constellation and trajectory plots. It is also used to interpolate between
simulation time points, which is necessary if the optimal symbol-sampling instant
is not exactly at a simulation time point. Usually this parameter must be nonzero
to generate a constellation diagram with the smallest grouping of sample points.

rotation is a user-selectable parameter that rotates the constellations by that
many radians. It does not need to be entered, and it will not affect the
error-vector-magnitude calculation, because both the ideal and distorted
constellations will be rotated by the same amount.

transient_duration is an optional time in seconds that causes this time duration of
symbols to be eliminated from the error-vector-magnitude calculation. Usually the
filters in the simulation have transient responses, and the error-vector-magnitude
calculation should not start until these transient responses have finished.

path_delay is an optional time in seconds of the sum of all delays in the signal
path. If the delay is 0, this parameter may be omitted. If it is non-zero, enter the
delay value. This can be calculated by using the function delay_path().

Note that const_evm returns a list of data. So in the above example,

3-62

data[0]= ideal constellation

data[1]= ideal trajectory

data[2]= distorted constellation

data[3]= distorted trajectory

data[4]= error vector magnitude versus time
data[5]= percent error vector magnitude

Please refer to the example file listed below to see how these data are plotted.
Example
Example equations

rotation = —-0.21

sampling_delay = 1/sym_rate[0, 0] — 0.5 Otstep[0, 0]

viund_ideal = vOut_ideal[1]

viund_dist = vOut_dist[1]

symbol_rate = sym_rate[0, 0]

data = const_evm(vfund_ideal, vfund_dist, symbol_rate, sampling_delay, rotation,
1.5ms, path_delay)

where the parameter sampling_delay can be a numeric value, or in this case an
equation using sym_rate, the symbol rate of the modulated signal, and tstep, the
time step of the simulation. If these equations are to be used in a Data Display
window, sym_rate and tstep must be defined by means of a variable (VAR)
component, and they must be passed into the dataset as follows: Make the
parameter Other visible on the Envelope simulation component, and edit it so that

Other = OutVar = sym_rate OutVar = tstep

In some cases, it may be necessary to experiment with the delay value to get the
constellation diagrams with the tightest points.

Example files

examples/RF_Board/ NADC_PA_prj/NADC_PA_Test.dsn and ConstEVM.dds and
examples/Tutorial/Env_BER_prj/timing_doc.dds.

Used in

Constellation and trajectory diagram generation and error-vector-magnitude
calculation

3-63

MeasEqn Function Reference

Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit constellation or
error-vector-magnitude measurement function.

Defined in

hpeesof/expressions/ael/digital_wireless_fun.ael

See also

constellation, delay_path, sample_delay_pi4dqpsk, sample_delay_qpsk
Description

The user must supply a single complex voltage spectral component (for example, the
fundamental) that is ideal (undistorted), as well as a single complex voltage spectral
component (for example, the fundamental) that has been distorted by the network
being simulated. These ideal and distorted complex voltage waveforms could be
generated from baseband I and Q data. The user must also supply the symbol rate, a
delay parameter, a rotation factor, and a parameter to eliminate any turn-on
transient from the error-vector-magnitude calculation are optional parameters.

The error vector magnitude is computed after correcting for the average phase
difference and RMS amplitude difference between the ideal and distorted
constellations.

3-64

constellation
Purpose

Generates the constellation diagram from Circuit Envelope, Transient, or Ptolemy
simulation I and Q data.

Synopsis
Const = constellation(i_data, q_data, symbol_rate, delay)
where

i_data is the in-phase component of data versus time of a single complex voltage
spectral component (for example, the fundamental) (this could be a baseband
signal instead, but in either case it must be real-valued versus time);

g_data is the quadrature-phase component of data versus time of a single complex
voltage spectral component (for example, the fundamental) (this could be a
baseband signal instead, but in either case it must be real valued versus time);

symbol_rate is the symbol rate of the modulation signal; and delay (if nonzero)
throws away the first delay = N seconds of data from the constellation plot. It is
also used to interpolate between simulation time points, which is necessary if the
optimal symbol-sampling instant is not exactly at a simulation time point. Usually
this parameter must be nonzero to generate a constellation diagram with the
smallest grouping of sample points.

Example
Example equations

Rotation = -0.21

Vfund =vOut[1] Oexp(j ORotation)

delay =1/sym_rate[0, 0] — 0.5 Otstep[0, 0]

Vimag = imag(Vfund)

Vreal = real(Vfund)

Const = constellation(Vreal, Vimag, sym_rate[0, 0], delay)

where Rotation is a user-selectable parameter that rotates the constellation by
that many radians, and vOut is the named connection at a node. The parameter
delay can be a numeric value, or in this case an equation using sym_rate, the
symbol rate of the modulated signal, and tstep, the time step of the simulation. If
these equations are to be used in a Data Display window, sym_rate and tstep must
be defined by means of a variable (VAR) component, and they must be passed into

3-65

MeasEqn Function Reference

the dataset as follows: Make the parameter Other visible on the Envelope
simulation component, and edit it so that

Other = OutVar = sym_rate OutVar = tstep

In some cases, it may be necessary to experiment with the value of delay to get the
constellation diagram with the tightest points.

Note vOut is a named connection on the schematic. Assuming that a Circuit
Envelope simulation was run, vOut is output to the dataset as a two-dimensional
matrix. The first dimension is time, and there is a value for each time point in the
simulation. The second dimension is frequency, and there is a value for each
fundamental frequency, each harmonic, and each mixing term in the analysis, as well
as the baseband term.

vOut[1] is the equivalent of vOutl[::, 1], and specifies all time points at the lowest
non-baseband frequency (the fundamental analysis frequency, unless a multitone
analysis has been run and there are mixing products). For former MDS users, the
notation "vOut[*, 2]" in MDS corresponds to the ADS notation of "vOut[1]".

Example files
examples/RF_Board/NADC_PA_prj/ConstEVMslow.dds
examples/Tutorial/ModSources_prj/QAM_16_ConstTraj.dds
Used in

Constellation diagram generation

Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit constellation measurement
function.

Defined in
hpeesof/expressions/ael/digital_wireless_fun.ael
See also

const_evm

3-66

Description

The I and Q data do not need to be baseband waveforms. For example, they could be
the in-phase (real or I) and quadrature-phase (imaginary or Q) part of a modulated
carrier. The user must supply the I and Q waveforms versus time, as well as the
symbol rate. A delay parameter is optional.

3-67

MeasEqn Function Reference

contour

Purpose

Generates contour levels on surface data
Synopsis

y = contour(data {, contour_levels})

where data is the data to be contoured, which must be at least two-dimensional
real number or integer or implicit, and contour_levels is an optional
one-dimensional quantity specifying the levels of the contours, which is normally
specified by the sweep generator “[]1,” but can also be specified as a vector. If not
provided, contour_levels defaults to six levels equally spaced between the
maximum and the minimum of the data.

Examples

a = contour(dB(S11), [1::3::10])
or

a = contour(dB(S11), {1, 4, 7, 10})

produces a set of four equally spaced contours on a surface generated as a function of,
say, frequency and strip width.

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

contour_polar

Description

This function introduces three extra inner independents into the data. The first two
are "level", the contour level, and "number", the contour number. For each contour
level there may be n contours. The contour is an integer running from 1 to n. The
contour is represented as an (x, y) pair with x as the inner independent.

3-68

contour_polar

Purpose

Generates contour levels on polar or Smith chart surface data
Synopsis

y = contour_polar(data {, contour_levels})

where data is the polar or Smith chart data to be contoured, (and therefore is
surface data), and contour_levels is an optional one-dimensional quantity
specifying the levels of the contours, which is normally specified by the sweep
generator “[],” but can also be specified as a vector. If not provided, contour_levels
defaults to six levels equally spaced between the maximum and the minimum of
the data.

Examples

a = contour_polar(data_polar, [1::4])

or

a = contour_polar(data_polar, {1, 2, 3, 4})
produces a set of four equally spaced contours on a polar or Smith chart surface.
Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

AEL, display_fun.ael

See also

contour

3-69

MeasEqn Function Reference

Cos
Purpose
Returns the cosine of a real number or integer
Synopsis
y = cos(x)

where x is the real number or integer, in radians.
Examples

a = cos(pi/3)
0.500

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

sin, tan

3-70

cosh

Purpose
hyperbolic cosine
Synopsis

cosh()

Example

cosh(0)
1

cosh(1)
1.543

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

sinh, tanh

3-71

MeasEqn Function Reference

Cross
Purpose

Computes the zero crossings of a signal and the interval between successive zero
crossings. The independent axis returns the time when the crossing occurred. The
dependent axis returns the time interval since the last crossing.

Synopsis

cross(signal, direction)

If direction = +1, compute positive going zero crossings.
If direction = -1, compute negative going zero crossings.
If direction = 0, compute all zero crossings (default).
Example

period=cross(vosc-2.0, 1)

This computes the period of each cycle of the vosc signal. The period is measured from
each positive-going transition through 2.0V.

Used In

Not applicable

Available in measurement component?
Not applicable

Defined In

Built in

See Also

None

3-72

Cross_caoirr
Purpose
Returns the cross-correlation
Synopsis
cross_corr(vl, v2)
where v1 and v2 are 1-dimensional data
Example

v1 = gpsk..videal[1]

v2 = qpsk..vout[1]

x_corr_v1v2 = cross_corr(vl, v2)
auto_corr_v1 = cross_corr(vl, v1)

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

AEL, digital_wireless_fun.ael

See also

None

3-73

MeasEqn Function Reference

cum_prod

Purpose

Returns the cumulative product
Synopsis

cum_prod(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

cum_prod(1)
1

cum_prod([1, 2, 3])
6

cum_prod([i, i])
-1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cum_sum, max, mean, min, prod, sum

3-74

cum_sum
Purpose

Returns the cumulative sum
Synopsis

cum_sum(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

cum_sum([1, 2, 3])
7

cum_sum([i, i]
21

Used in

Not Applicable

Available as measurement component?
Not Applicable

Defined in

Built in

See also

cum_prod, max, mean, min, prod, sum

3-75

MeasEqn Function Reference

dB

Purpose

Returns the decibel measure of a voltage ratio

Synopsis

dB(r{, z1, z2})= 20 log(mag(r) - 10 log(zOutfactor/zInfactor)

where r is a voltage ratio (vOut/vIn), z1 is the source impedance (default is 50),
zOutfactor = mag(z2)**2 / real (z2), z2 is the load impedance (default is 50), and
zInfactor = mag(z1)**2 / real (z1).

Examples

dB(100)
40

dB(8-6%j)
20

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

dBm, pae

3-76

dBm

Purpose

Returns the decibel measure of a voltage referenced to a 1 milliwatt signal
Synopsis

dBm(v{, z})= 20 log(mag(v) - 10 log(real(zOutfactor/50)) + 10

where v is a voltage (the peak voltage), z is an impedance (default is 50),
and zOutfactor = mag(z)**2 / real (z).

Examples

dBm(100)
50

dBm(8-6%))
30

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

dB, pae

3-77

MeasEqn Function Reference

dc_to_rf

Purpose

Returns DC-to-RF efficiency

Synopsis

dc_to_rf(vPlusRF, vMinusRF, vPlusDC, vMinusDC, currentRF, currentDC, freq)

where vPlusRF and vMinusRF are RF voltages at the negative terminals,
vPlusDC and vMinusDC are DC voltages at the negative terminals, currentRF
and currentDC are the RF and DC currents for power calculation, and freq is
harmonic index of the RF frequency at the output port.

Example

a = dc_to_rf(vrf, 0, vDC, 0, I_Probel.i, SRC1.i, IMHz
Used in

Harmonic balance simulation
Available as measurement component?
DCtoRF

Defined in

AEL, circuit_fun.ael

See also

None

Description

This measurement computes the DC-to-RF efficiency of any part of the network.

3-78

deg

Purpose

Converts radians to degrees
Synopsis

deg(x)

Example

deg(1.5708)
90

deg(pi)
180

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

rad

3-79

MeasEqn Function Reference

delay_path
Purpose

This function is used to determine the time delay and the constellation rotation angle
between two nodal points along a signal path.

Synopsis
delay_path(vin, vout)

where vin is the complex envelope (I +j * Q) at the input node and voutis I +j* Q
at the output node.

Example
x = delay_path(vin[1], vout[1])

where vin[1] and vout[1] are complex envelopes around the first carrier frequency
in envelope simulation. In return, x[0] is the time delay (in seconds) between vin
and vout. x[1] is the rotation angle (in radians) between vin and vout
constellations.

or
x = delay_path(T1, T2)
where T1 and T2 are instance names of two TimedSink components.
Used in
Circuit envelope simulation, Ptolemy simulation.
Available as measurement component?
Not applicable
Defined in
Built in
See also
ber_pid4dqpsk, ber_qpsk, const_evm, cross_corr
Description

This function outputs an array of two values. The first value, datal0], is the time
delay between vin and vout. The second value, data[1], is the rotation angle between
vin-constellation and vout-constellation.

3-80

dev_lin_phase
Purpose
Returns deviation (in degrees) from linear phase.
Synopsis
dev_lin_phase(voltGain)

where voltGain is a function of frequency.
Example
a = dev_lin_phase(S21)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
DevLinPhase
Defined in
AEL, rf_system_fun.ael

See also

diff, phasedeg, phaserad, pwr_gain, ripple, unwrap, volt_gain

Description

Given a variable sweep over a frequency range, a linear least-squares fit is performed
on the phase of the variable, and the deviation from this linear fit is calculated at

each frequency point.

3-81

MeasEqn Function Reference

diff

Purpose

Returns the numerical difference
Synopsis

y = diff(data)

returns the numerical difference against the inner independent variable associated
with the data.

Examples

group_delay = —diffltunwrap(phaserad(S21),pi))/ (20pi)
Used in

Not applicable

Available as measurement component?

Not applicable

Defined in

AEL, elementary_fun.ael

See also

dev_lin_phase, integrate, phasedeg, phaserad, ripple, unwrap
Description

Calculates a simple numerical difference against the inner independent variable
associated with the data. Can be used to calculate group delay.

3-82

erf

Purpose

Returns the error function
Synopsis

y = erf(x)

where x is real.

Examples

a = —erf(0.1)
0.112

a = —erf(0.2)
0.223

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

erfc

Description

Calculates the error function, the area under the Gaussian curve exp(—x**2).

3-83

MeasEqn Function Reference

erfc

Purpose

Returns the complementary error function
Synopsis

y = erfe(x)

where x is real.

Examples

a = —erfe(0.1)
0.888

a = —erfc(0.2)
0.777

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

erf

Description

Calculates the complementary error function, or 1 minus the error function. For large
X, this can be calculated more accurately than the plain error function.

3-84

exp

Purpose

Given an integer or real number as an exponent, returns e (~2.7183) raised to that

exponent
Synopsis
y = exp(x)
where x is the exponent of e.
Examples

a = exp(l)
2.71828

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, float, int, log, log10, pow, sgn, sqrt

3-85

MeasEqn Function Reference

eye
Purpose

Creates data for an eye diagram plot
Synopsis

eye(data, symbolRate{, Cycles{, Delay}})

data is either numeric data or a time domain waveform typically from the I or Q data
channel. symbolRate is the symbol rate of the channel. For numeric data, the symbol
rate is the reciprocal of the number of points in one cycle; for a waveform, it is the
frequency. Cycles is optional and is the number of cycles to repeat, default is 1. Delay
is an optional sampling delay, default is 0.

Example

eye(I_data, symbol_rate)

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

constellation

Description

Refer also to analysis.dds in /examples/Tutorial/express_meas_pr;j.

The cycle parameter is used to display more than one cycle of the eye. The delay
parameter is used to adjust the position of the eye opening. Note that delay is not
used to remove a transient in the eye diagram. To remove an initial transient, you
must use explicit indexing on the original data. Following this, you may want to use a
delay to realign the eye opening.

3-86

fft

Purpose

Performs the discrete Fourier transform
Synopsis

y = fft(x, length)

Example

fft((1, 1, 1, 1)
[4+0i, 0+0i]

fft([1, 0, 0, 0]
[1+0i, 1+0i]

fft(1, 4)
[140i, 1+0i]

Used in

Not applicable

Available as measurement component?
Not Applicable

Defined in

Built in

See also

fs, ts

Description

fft(x) is the discrete Fourier transform of x computed with the fast Fourier transform
algorithm. fft() uses a high-speed radix-2 fast Fourier transform when the length of x
is a power of two. fft(x, n) performs an n-point discrete Fourier transform, truncating
x if length(x) > n and padding x with zeros if length(x) < n.

fft() uses a real transform if x is real and a complex transform if x is complex. If the
length of x is not a power of two, then a mixed radix algorithm based on the prime
factors of the length of x is used.

3-87

MeasEqn Function Reference

find_index

Purpose

Finds the closest index for a given search value
Synopsis

index = find_index(data_sweep, search_value)

To facilitate searching, the find_index function finds the index value in a sweep that
is closest to the search value. Data of type int or real must be monotonic. find_index
also performs an exhaustive search of complex and string data types.

Examples

Given S-parameter data swept as a function of frequency, find the value of S;; at 1
GHz:

index=find_index(freq, 1GHz)
a=S11[index]

Used in

Use with all simulation data
Available as measurement component?
Not applicable

Defined in

Built in

See also

mix

3-88

float
Purpose
Converts an integer to a real (floating-point) number
Note: To convert a real to an integer, use int.
Synopsis
y = float(x)
where x is the integer to convert.
Examples
a = float(10)
Used in
Not applicable
Available as measurement component?
Not applicable
Defined in
Built in
See also

abs, cint, float, int, log10, pow, sgn, sqrt

3-89

MeasEqn Function Reference

fs

Purpose

Performs a time-to-frequency transform
Synopsis

fs(x, fstart, fstop, numfreqs, dim, windowType, windowConst, tstart, tstop,
interpOrder, transformMethod)

See detailed Description below.
Examples

The following example equations assume that a transient simulation was performed
from 0 to 5 ns with 176 timesteps, on a 1-GHz-plus-harmonics signal called vOut:

y=fs(vOut)
returns the spectrum (0, 0.2GHz, ... , 25.6GHz), evaluated from O to 5 ns.

y=fs(vOut, 0, 10GHz)
returns the spectrum (0, 0.2GHz, ... , 10.0GHz), evaluated from 0 to 5 ns.

y=fs(vOut, 0, 10GHz, 11)
returns the spectrum (0, 1.0GHz, ... , 10.0GHz), evaluated from 0 to 5 ns.

y=fs(vOut,,,,,,, 3ns, 5ns)
returns the spectrum (0, 0.5GHz, ... , 32.0GHz), evaluated from 3 to 5 ns.

y=fs(vOut, 0, 10GHz, 21, , , , 3ns, 5ns)
returns the spectrum (0, 0.5GHz, ... , 10.0GHz), evaluated from 3 to 5 ns.

y=fs(vOut, 0, 10GHz, 11, , "Blackman")
returns the spectrum (0, 1.0GHz, ... , 10.0GHz), evaluated from 0 to 5 ns after a
Blackman window is applied.

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

3-90

See also
fft, fspot
Description

fs(x) returns the frequency spectrum of the vector x by using a chirp-z transform. The
values returned are peak, complex values.

x will typically be data from a transient, signal processing, or envelope analysis.

Transient simulation uses a variable timestep and variable order algorithm. The user
sets an upper limit on the allowed timestep, but the simulator will control the
timestep so that the local truncation error of the integration is also controlled. The
nonuniformly sampled data are uniformly resampled for fs.

If the Gear integration algorithm is used, the order can also change during
simulation. fs can use this information when resampling the data. This variable
order integration depends on the presence of a special dependent variable, tranorder,
which is output by the transient simulator. When the order varies, the Fourier
integration will adjust the order of the polynomial it uses to interpolate the data
between timepoints.

If the tranorder variable is not present, or if the user wishes to override the
interpolation scheme, then interpOrder may be set to a nonzero value:

1 = use only linear interpolation
2 = use quadratic interpolation
3 = use cubic polynomial interpolation

Only polynomials of degree one to three are supported. The polynomial is fit from the
timepoint in question backwards over the last n points. This is because time-domain
data are obtained by integrating forward from zero; previous data are used to
determine future data, but future data can never be used to modify past data.

The data are uniformly resampled, with the number of points being determined by
increasing the original number of points to the next highest power of two.

The data to be transformed default to all of the data. The user may specify tstart and
tstop to transform a subset of the data.

The starting frequency defaults to 0 and the stopping frequency defaults to
1/(2*newdeltat), where newdeltat is the new uniform timestep of the resampled data.
The number of frequencies defaults to (fstop—fstart)*(tstop—tstart)+1. The user may
change these by using fstart, fstop, and numfreqs. Note that numfreqs specifies the

3-91

MeasEqn Function Reference

number of frequencies, not the number of increments. Thus, to get frequencies at (0,
1, 2, 3, 4, 5), numfreqs should be set to 6, not 5.

The data to be transformed may be windowed. The window is specified by
windowType, with an optional window constant windowConst. The window types and
their default constants are:

0 = None

1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865

5 = 8510 6.0 (This is equivalent to the time-to-frequency transformation with
normal gate shape setting in the 8510 series network analyzer.)

6 = Blackman
7 = Blackman—Harris

The default time-to-frequency transform is done by means of a chirp-z transform.
This may be changed by using transformMethod:

1 = Chirp-z transform
2 = Discrete Fourier integral evaluated at each frequency
3 = Fast Fourier transform

When the data to be operated on is of the baseband type, such as VO[0] from a Circuit
Envelope analysis, where VO is an output node voltage and [0] is index for DC, then
in order to obtain a single sided spectrum, only the real part of VO[0] should be used
as the argument. ie, x=fs(real(VO[O0],...).

This is necessary because the fs() function has no way of knowing the data VO[0] is
baseband. Even though VO[0] contains an imaginary part of all zeroes, it is still
represented by a complex data type. When the first argument of fs() is complex, the
result will be a double-sided spectrum by default.

An alternative method of obtaining a single-sided spectrum from the above baseband
data is to specify the frequencies ranges in the spectrum, using the fstart, fstop, and
numfreqs parameters of the fs() function.

3-92

For example, y=fs(VOI[0], 0, 25e3, 251). This will yield a spectrum from 0 to 25 kHz
with 26 frequencies and 1 kHz spacing.

This does not apply to data from Transient analysis nor Ptolemy simulation because
voltage data from Transient and baseband data from Ptolemy are real.

3-93

MeasEqn Function Reference

fspot

Purpose

Performs a single-frequency time-to-frequency transform

Synopsis

fspot(x, fund, harm, windowType, windowConst, interpOrder, tstart)
See detailed Description below.

Examples

The following example equations assume that a transient simulation was performed
from 0 to 5 ns on a 1-GHz-plus-harmonics signal called vOut:

fspot(vOut)
returns the 200-MHz component, integrated from 0 to 5 ns.

fspot(vOut, , 5)
returns the 1-GHz component, integrated from O to 5 ns.

fspot(vOut, 1GHz, 1)
returns the 1-GHz component, integrated from 4 to 5 ns.

fspot(vOut, 0.5GHz, 2, , , , 2.5ns)
returns the 1-GHz component, integrated from 2.5 to 4.5 ns.

fspot(vOut, 0.25GHz, 4, "Kaiser")
returns the 1-GHz component, integrated from 1 to 5 ns, after applying the default
Kaiser window to this range of data.

fspot(vOut, 0.25GHz, 4, 3, 2.0)
returns the 1-GHz component, integrated from 1 to 5 ns, after applying a Gaussian
window with a constant of 2.0 to this range of data.

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

3-94

See also
fft, fs
Description

fspot(x) returns the discrete Fourier transform of the vector x evaluated at one
specific frequency. The value returned is the peak component, and it is complex. The
harmth harmonic of the fundamental frequency fund is obtained from the vector x.
The Fourier transform is applied from time tstop—1/fund to tstop, where tstop is the
last timepoint in x.

When x is a multidimensional vector, the transform is evaluated for each vector in
the specified dimension. For example, if x is a matrix, then fspot(x) applies the
transform to every row of the matrix. If x is three dimensional, then fspot(x) is
applied in the lowest dimension over the remaining two dimensions. The dimension
over which to apply the transform may be specified by dim; the default is the lowest
dimension (dim=1). x must be numeric. It will typically be data from a transient,
signal processing, or envelope analysis.

fund must be greater than zero. It is used to specify the period 1/fund for the Fourier
transform. fund defaults to a period that matches the length of the independent axis
of x.

harm may be any positive number. harm defaults to 1. Specifying harm=0 will
compute the dec component of x.

The data to be transformed may be windowed. The window is specified by
windowType, with an optional window constant windowConst. The window types and
their default constants are:

0 = None

1 = Hamming 0.54

2 = Hanning 0.50

3 = Gaussian 0.75

4 = Kaiser 7.865
5=285106.0

6 = Blackman

7 = Blackman-Harris

windowType can be specified either by the number or by the name.

3-95

MeasEqn Function Reference

By default, the transform is performed at the end of the data from tstop-1/fund to
tstop. By using tstart, the transform can be started at some other point in the data.
The transform will then be performed from tstart to tstart+1/fund.

Unlike with fft or fs, the data to be transformed are not zero padded or resampled.
fspot works directly on the data as specified, including nonuniformly sampled data
from a transient simulation.

Transient simulation uses a variable timestep and variable order algorithm. The user
sets an upper limit on the allowed timestep, but the simulator will control the
timestep so the local truncation error of the integration is controlled. If the Gear
integration algorithm is used, the order can also be changed during simulation. fspot
can use all of this information when performing the Fourier transform. The time data
are not resampled; the Fourier integration is performed from timestep to timestep of
the original data.

When the order varies, the Fourier integration will adjust the order of the polynomial
it uses to compute the shape of the data between timepoints.

This variable order integration depends on the presence of a special dependent
variable, tranorder, which is output by the transient simulator. If this variable is not
present, or if the user wishes to override the interpolation scheme, then interpOrder
may be set to a nonzero value:

1 = use only linear interpolation
2 = use quadratic interpolation
3 = use cubic polynomial interpolation

Only polynomials of degree one to three are supported. The polynomial is fit because
time domain data are obtained by integrating forward from zero; previous data are
used to determine future data, but future data can never be used to modify past data.

3-96

fun_2d_outer

Purpose

Applies a function to the outer dimension of two-dimensional data.
Synopsis

fun_2d_outer(data, fun)

where data must be two-dimensional data, and fun is some function (usually
mean, max, or min) that will be applied to the outer dimension of the data.

Example

fun_2d_outer(data, min)

Used in

max_outer, mean_outer, min_outer functions.
Available as measurement component?

No, but the function can be used on a schematic page, in a measurement equation.
Defined in

AEL, statistcal_fun.ael

See also

max_outer, mean_outer, min_outer
Description

Functions such as mean, max, and min operate on the inner dimension of
two-dimensional data. The function fun_2d_outer enables these functions to be
applied to the outer dimension. As an example, assume that a Monte Carlo
simulation of an amplifier was run, with 151 random sets of parameter values, and
that for each set the S-parameters were simulated over 26 different frequency points.
S21 becomes a [151 Monte Carlo iteration X 26 frequency] matrix, with the inner
dimension being frequency, and the outer dimension being Monte Carlo index. Now,
assume that it is desired to know the mean value of the S-parameters at each
frequency. Inserting an equation mean(S21) computes the mean value of S21 at each
Monte Carlo iteration. If S21 is simulated from 1 to 26 GHz, it computes the mean
value over this frequency range, which usually is not very useful. The function
fun_2d_outer allows the mean to be computed over each element in the outer
dimension.

3-97

MeasEqn Function Reference

ga_circle

Purpose

Generates an available-gain circle
Synopsis

ga_circle(S{, gain, numOfPts})

where S is the scattering matrix of a 2-port network, gain is the specified gain in
dB, and numOfPts is the desired number of points per circle. The default value for
gain is min(max_gain(S)) — {1, 2, 3}, and the default value for numOfPts is 51.

Example

circleData = ga_circle(S, 2, 51)
circleData = ga_circle(S, {2, 3, 4}, 51)
return the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
GaCircle

Defined in

AEL, circle_fun.ael

See also

gl_circle, gp_circle, gs_circle
Description

This expression generates the constant available-gain circle resulting from a source
mismatch. The circle is defined by the loci of the source-reflection coefficients
resulting in the specified gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values
can be specified for a scattering parameter that has dimension less than four. This
measurement is supported for 2-port networks only.

3-98

gain_comp

Purpose

Returns gain compression
Synopsis

gain_comp(Sji)

where Sji is a power-dependent complex transmission coefficient obtained from

large-signal S-parameter simulation.
Example
gc = gain_comp(S21[::, 0])
Used in
Large-signal S-parameter simulations
Available as measurement component?
GainComp
Defined in
AEL, rf_system_fun.ael
See also
phase_comp

Description

This measurement calculates the small-signal minus the large-signal power gain, in
dB. The first power point (assumed to be small) is used to calculate the small-signal

power gain.

3-99

MeasEqn Function Reference

generate

Purpose

Generates a sequence of real numbers
Synopsis

generate(start, stop, npts)

where start is the first number, stop is the last number, and npts is the number of
numbers in the sequence.

Example

a = generate(9, 4, 6)
return the sequence 9., 8., 7., 6., 5., 4.

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

Not applicable

Description

This function generates a sequence of real numbers. The modern way to do this is to
use the sweep generator “[].”

3-100

get_attr
Purpose
Gets a data attribute
Synopsis

a = get_attr(data, "attr_name"{, eval})

where data is a frequency swept variable, attr_name is the name of an attribute,

and eval is true or false as to whether to evaluate the attribute.

Example

get_attr(data, "fc", true)
10GHz

get_attr(data, "dataType")
"TimedData"

get_attr(data, "TraceType", false)
"Spectral”

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

set_attr

Description

This function only works with frequency swept variables.

3-101

MeasEqn Function Reference

gl_circle

Purpose

Generates a load-mismatch gain circle
Synopsis

gl_circle(S{, gain, numOfPts})

where S is the scattering matrix of a 2-port network, gain is the specified gain in
dB, and numOfPts is the desired number of points per circle. The default value for
gain is 10%log(1/ (1 - mag(S22)¥*2)) — {1, 2, 3}, and the default value for
numOfPts is 51.

Example

circleData = gl_circle(S, 2, 51)
circleData = gl_circle(S, {2, 3, 4}, 51)
return the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
GlCircle

Defined in

AEL, circle_fun.ael

See also

ga_circle, gp_circle, gs_circle
Description

This expression generates the unilateral gain circle resulting from a load mismatch.
The circle is defined by the loci of the load-reflection coefficients that result in the
specified gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values
can be specified for a scattering parameter that has dimension less than four. This
measurement is supported for 2-port networks only.

3-102

gp_circle

Purpose

Generates a power gain circle
Synopsis

gp_circle(S{, gain, numOfPts})

where S is the scattering matrix of a 2-port network, gain is the specified gain in
dB, and numOfPts is the desired number of points per circle. The default value for
gain is min(max_gain(S)) — {1, 2, 3}, and the default value for numOfPts is 51

Example

circleData = gp_circle(S, 2, 51)
circleData = gp_circle(S, {2, 3, 4}, 51)
return the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
GpCircle

Defined in

AEL, circle_fun.ael

See also

ga_circle, gl_circle, gs_circle
Description

This expression generates a constant-power-gain circle resulting from a load
mismatch. The circle is defined by the loci of the output-reflection coefficients that
result in the specified gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values
can be specified for a scattering parameter that has dimension less than four. This
measurement is supported for 2-port networks only.

3-103

MeasEqn Function Reference

gs_circle

Purpose

Returns a source-mismatch gain circle
Synopsis

gs_circle(S{, gain, numOfPts})

where S is the scattering matrix of a 2-port network, gain is the specified gain in
dB, and numOfPts is the desired number of points per circle. The default value for
gain is 10*log(1/ (1 - mag(S11)**2)) — {1, 2, 3}, and the default value for
numOfPts is 51.

Example

circleData = gs_circle(S, 2, 51)
circleData = gs_circle(S, {2, 3, 4}, 51)
return the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
GsCircle

Defined in

AEL, circle_fun.ael

See also

ga_circle, gl_circle, gp_circle
Description

This expression generates the unilateral gain circle resulting from a source
mismatch. The circle is defined by the loci of the source-reflection coefficients that
result in the specified gain.

A gain circle is created for each value of the swept variable(s). Multiple gain values
can be specified for a scattering parameter that has dimension less than four. This
measurement is supported for 2-port networks only.

3-104

histogram

Purpose

Generates a histogram representation
Synopsis

histogram(x, numBins, minBin, maxBin)

where x is the signal, numBins is number of subintervals or bins used to measure
the histogram, and minBin and maxBin are the beginning and end, respectively, of
the evaluation of the histogram.

Example

y = histogram(data)

y = histogram(data, 20)

Used in

Not applicable

Available as measurement component?

This function can only be entered by means of a Eqn component in the Data Display
window. There is no measurement component in schematic window.

Defined in

Built in

See also

cdf, pdf, yield_sens
Description

This function creates a histogram that represents data. The default values for
minBin and maxBin are the minimum and the maximum values, respectively, of the
data, and numBins is set to log(numOfPts)/1og(2.0) by default.

3-105

MeasEqn Function Reference

htoabcd
Purpose
Performs H-to-ABCD conversion
Synopsis
htoabcd(H)
where H is the hybrid matrix of a 2-port network.
Example
a = htoabcd(h)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

abcdtoh, htoz, ytoh
Description

This measurement transforms the hybrid matrix of a 2-port network to a chain
(ABCD) matrix.

3-106

htos

Purpose

Performs H-to-S conversion
Synopsis

htos(H, Z)

where H is the hybrid matrix of a 2-port network., and Z is the reference
impedance.

Example

s = htos(h, 50)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

htoy, htoz, stoh
Description

This measurement transforms the hybrid matrix of a 2-port network to a scattering
matrix.

3-107

MeasEqn Function Reference

htoy
Purpose
Performs H-to-Y conversion
Synopsis
htoy(H)
where H is the hybrid matrix of a 2-port network
Example
Y = htoy(H)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

htos, htoz, ytoh
Description

This measurement transforms the hybrid matrix of a 2-port network to an
admittance matrix.

3-108

htoz
Purpose
Performs H-to-Z conversion
Synopsis
htoz(H)
where H is the hybrid matrix of a 2-port network
Example
z = htoz(h)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

htos, htoy, ytoh
Description

This measurement transforms the hybrid matrix of a 2-port network to an impedance
matrix.

3-109

MeasEqn Function Reference

identity

Purpose

Returns the identity matrix
Synopsis

Y = identity(2)

Y = identity(2, 3)

The identity matrix is defined as follows. If one argument is supplied, then a square
matrix is returned with ones on the diagonal and zeros elsewhere. If two arguments
are supplied, then a matrix with size rows x cols is returned, again with ones on the
diagonal.

Example

a = identity(2)

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

ones, Zeros

3-110

ifc

Purpose

Returns frequency-selective current in Harmonic Balance analysis
Synopsis

ifc(iOut, harm_freq_index)

where iOut is the current through a branch, and harm_freq_index is the harmonic
index of the desired frequency. Note that the harm_freq_index argument's entry
should reflect the number of tones in the harmonic balance controller. For example, if
one tone is used in the controller, there should be one number inside the braces; two
tones would require two numbers separated by a comma.

Example

The following example is for two tones in the harmonic balance controller:
ifc(I_Probel.i, {1, 0})

Used in

Harmonic Balance simulation
Available as measurement component?
Ife

Defined in

AEL, circuit_fun.ael

See also

pfe, vfe

Description

This measurement gives the RMS current value of one frequency-component of a
harmonic balance waveform.

3-111

MeasEqn Function Reference

ifc_tran

Purpose

Returns frequency-selective current in Transient analysis
Synopsis

ifc_tran(iOut, fundFreq, harmNum)

where iOut is the current through a branch, fundFreq is the fundamental frequency
and harmNum is the harmonic number of the fundamental frequency (positive
integer value only).

Example

ifc_tran(I_Probel.i, 1GHz, 1)
Used in

Transient simulation
Available as measurement component?
IfcTran

Defined in

AEL, circuit_fun.ael

See also

pfc_tran, vfc_tran
Description

This measurement gives RMS current, in current units, for a specified branch at a
particular frequency of interest. fundFreq determines the portion of the time-domain
waveform to be converted to the frequency domain. This is typically one full period
corresponding to the lowest frequency in the waveform. harmNum is the harmonic
number of the fundamental frequency at which the current is requested.

3-112

imag

Purpose

Returns the imaginary component of a complex number

Synopsis
y = imag(x)

where x is a complex number.
Examples

a = imag(1-1%))
-1.000

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cmplx, real

3-113

MeasEqn Function Reference

indep

Purpose

Returns the independent attached to the data
Synopsis

Y = indep(x)

Y = indep(x, dimension)

Y = indep(x, "indep_name")

indep() returns the independent (normally the swept variable) attached to simulation
data. When there is more than one independent, then the independent of interest
may be specified by number or by name. If no independent specifications are passed,
then indep() returns the innermost independent.

Example

Given S-parameters versus frequency and power: Frequency is the innermost
independent, so its index is 1. Power has index 2.

freq = indep(S, 1)
freq = indep(S, "freq")

power = indep(S, 2)
power = indep(S, "power")

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

find_index

3-114

int

Purpose

Returns the largest integer not greater than a given real value

Synopsis
y = int(x)

where x is the real value.
Examples

a = int(4.3);
4

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, exp, float, logl0, pow, sgn, sqrt

3-115

MeasEqn Function Reference

integrate

Purpose

Returns the intergral of data
Synopsis

y = integrate(data{, start, stop{, incr}})
returns the intergral of data from start to stop with increment incr.
Examples

x =[0::0.01::1.0]

y = vs(2lexp(-x[Xk) / sqrt(pi), x)

z= integrate(y, 0.1, 0.6, 0.001)

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

AEL, circuit_fun.ael

See also

diff

Description

Returns the intergral of data from start to stop with increment incr using the
composite trapezoidal rule on uniform subintervals. The default values for start and
stop are the first and last points of the data, respectively. The default value for incr is
“(stop - start) / (nPts - 1)” where nPts is the number of original data points between
start and stop, inclusively.

3-116

interp

Purpose

Returns linearly interpolated data
Synopsis

y = interp(dataf, start, stop{, incr}})
returns linearly interpolated data between start and stop with increment incr.
Examples

y = interp(data{, start, stop{, incr}})
Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

None

Description

Returns linearly interpolated data between start and stop with increment incr. The
default values for start and stop are the first and last points of the data, respectively.
The default value for incr is “(stop - start) / (nPts - 1)” where nPts is the number of
original data points between start and stop, inclusively.

3-117

MeasEqn Function Reference

inverse

Purpose

Performs a matrix inverse

Synopsis

y = inverse(x)

inversion of real and complex general matrices.
Example

inverse({{1, 2}, {3, 4}});
{{-2, 1}, {1.5, -0.5}}

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

None

3-118

ip3_in

Purpose

Returns the input third-order intercept (TOI) point
Synopsis

ip3_in(vOut, ssGain, fundFreq, imFreq, zRef)

where vOut is the signal voltage at the output, ssGain is the small signal gain in
dB, fundFreq and imFreq are the harmonic frequency indices for the fundamental
and intermodulation frequencies, respectively, and zRef is the reference
impedance.

Example

y=ip3_in(vOut, 22, {1, 0}, {2, -1}, 50)
Used in

Harmonic balance simulation
Available as measurement component?
IP3in

Defined in

AEL, rf_system_fun.ael

See also

ip3_out, ipn

Description

This measurement determines the input third-order intercept point (in dBm) at the
input port with reference to a system output port.

3-119

MeasEqn Function Reference

ip3_out

Purpose

Returns the output third-order intercept (TOI) point
Synopsis

ip3_out(vOut, fundFreq, imFreq, zRef)

where vOut is the signal voltage at the output, fundFreq and imFreq are the
harmonic frequency indices for the fundamental and intermodulation frequencies,
respectively, and zRef is the reference impedance.

Example

y=ip3_out(vOut, {1, 0}, {2, -1}, 50)
Used in

Harmonic balance simulation
Available as measurement component?
IP3out

Defined in

AEL, rf_system_fun.ael

See also

ip3_in, ipn

Description

This measurement determines the output third-order intercept point (in dBm) at the
system output port.

3-120

ipn

Purpose

Returns the output nth-order intercept (TOI) point
Synopsis

ipn(vPlus, vMinus, iOut, fundFreq, imFreq, n)

where vPlus and vMinus are the voltages at the positive and negative output
terminals, respectively; iOut is the current through a branch; fundFreq and
imFreq are the harmonic indices of the fundamental and intermodulation
frequencies, respectively; and n is the order of the intercept.

Example

y=ipn(vOut, 0, I_Probel.i, {1, 0}, {2, -1}, 3)
Used in

Harmonic balance simulation
Available as measurement component?
IPn

Defined in

AEL, circuit_fun.ael

See also

ip3_in, ip3_out

Description

This measurement determines the output nth-order intercept point (in dBm) at the
system output port.

3-121

MeasEqn Function Reference

ispec_tran

Purpose

Returns current spectrum

Synopsis

ispec_tran(iOut, fundFreq, numHarm)

where iOut is the current through a branch, fundFreq is the fundamental
frequency value and numHarm is the number of harmonics of fundamental
frequency (positive integer value only).

Example

y=ispec_tran(I_Probel.i, 1GHz, 8)
Used in

Transient simulation

Available as measurement component?
IspecTran

Defined in

AEL, circuit_fun.ael

See also

pspec_tran, vspec_tran
Description

This measurement gives a current spectrum for a specified branch. The measurement
gives a set of RMS current values at each frequency. fundFreq determines the portion
of the time-domain waveform to be converted to frequency domain. This is typically
one full period corresponding to the lowest frequency in the waveform. numHarm is
the number of harmonics of fundamental frequency to be included in the currents
spectrum.

3-122

it

Purpose

Returns time-domain current waveform
Synopsis

it(iOut, tmin, tmax, numOfPnts)

where iOut is the current through a branch, tmin and tmax are start time are stop
time, respectively, and numOfPts is the number of points (integer values only).

ExamplezRef

y=it(I_Probel.i, 0, 10nsec, 201)
Used in

Harmonic balance simulation
Available as measurement component?
It

Defined in

AEL, circuit_fun.ael

See also

vt

Description

This measurement converts a harmonic-balance current frequency spectrum to a
time-domain current waveform.

3-123

MeasEqn Function Reference

|_stab_circle

Purpose

Returns a load (output) stability circle
Synopsis

1_stab_circle(S{, numOfPts})

where S is the scattering matrix of a 2-port network and numOfPts is the desired
number of points per circle and is set to 51 by default.

Example

circleData=]_stab_circle(S, 51)
returns the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
L_StabCircle

Defined in

AEL, circle_fun.ael

See also

I_stab_region, s_stab_circle, s_stab_region
Description

The expression generates a load stability circle. The circle is defined by the loci of
load-reflection coefficients where the magnitude of the source-reflection coefficient is
1.

A circle is created for each value of the swept variable(s). This measurement is
supported for 2-port networks only.

3-124

|_stab_region
Purpose
Indicates the region of stability of the load (output) stability circle
Synopsis
1_stab_region(S)
where S is the scattering matrix of a 2-port network.
Example

region = 1_stab_region(S)
returns “Outside” or “Inside”.

Used in

Small-signal S-parameter simulations
Available as measurement component?
Not applicable

Defined in

AEL, circle_fun.ael

See also

1_stab_circle, s_stab_circle, s_stab_region
Description

This expression returns a string identifying the region of stability of the
corresponding load stability circle.

3-125

MeasEqn Function Reference

In
Purpose
Returns the natural logarithm (In) of an integer or real number
Synopsis
y = In(x)
where x is the integer or real number.
Examples

a = In(e);
returns 1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, exp, float, int, pow, sgn, sqrt

3-126

log
Purpose

Returns the base 10 logarithm of an integer or real number

Note: log10(x) perform the same operation.

Synopsis
y = log(x)

where x is the integer or real number.
Examples

a = log(10)
1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, exp, log10, float, int, pow, sgn, sqrt

3-127

MeasEqn Function Reference

log10
Purpose

Returns the base 10 logarithm of an integer or real number

Note: log(x) perform the same operation.

Synopsis
y = log10(x)

where x is the integer or real number.
Examples

a =1log10(10)
1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, exp, log, float, int, pow, sgn, sqrt

3-128

mag

Purpose

Returns the magnitude of a complex number

Synopsis
y = mag(x)

where x is a complex number.
Examples

a = mag(3-4%)
5.000

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

conj

3-129

MeasEqn Function Reference

mapl_circle

Purpose

Returns source-mapping circles from port 1 to port 2
Synopsis

circleData=map1_circle(S{, numOfPts})

where S is the scattering matrix of a 2-port network and numOfPts is the desired
number of points per circle and is set to 51 by default.

Example

circleData=map1_circle(S, 51)
returns the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
Map1Circle

Defined in

AEL, circles_fun.ael

See also

map2_circle

Description

The expression maps the set of terminations with unity magnitude at port 1 to port 2.
The circles are defined by the loci of terminations on one port as seen at the other
port.

A source-mapping circle is created for each value of the swept variable(s). This
measurement is supported for 2-port networks only.

3-130

map?2_circle

Purpose

Returns source-mapping circles, from port 2 to port 1
Synopsis

circleData=map2_circle(S{, numOfPts})

where S is the scattering matrix of a 2-port network and numOfPts is the desired
number of points per circle and is set to 51 by default.

Example

circleData=map2_circle(S, 51)
returns the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
Map2Circle

Defined in

AEL, circle_fun.ael

See also

mapl_circle

Description

The expression maps the set of terminations with unity magnitude at port 2 to port 1.
The circles are defined by the loci of terminations on one port as seen at the other
port.

A source-mapping circle is created for each value of the swept variable(s). This
measurement is supported for 2-port networks only.

3-131

MeasEqn Function Reference

max

Purpose

Returns the maximum value
Synopsis

Y = max(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

a =max([1, 2, 3])
3

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cum_prod, cum_sum, mean, min, prod, sum

3-132

max_gain
Purpose
Returns the maximum available and stable gain
Synopsis
max_gain(S)
where S is a scattering matrix of 2-port network.
Example
y=max_gain(S)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
MaxGain
Defined in
AEL, rf_system_fun.ael
See also
sm_gammal, sm_gammaZ2, stab_fact, stab_meas
Description

Given a 2 x 2 scattering matrix, this measurement returns the maximum available
and stable gain between the input and the measurement ports.

3-133

MeasEqn Function Reference

max_index

Purpose

Returns the index of the maximum
Synopsis

max_index(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

max_index([1, 2, 3])
2

max_index([3, 2, 1])
0

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built-in

See also

min_index

3-134

max_outer
Purpose
Computes the maximum across the outer dimension of two-dimensional data.
Synopsis
max_outer(data)
where data must be two-dimensional data.
Example
max_outer(data)
Used in
Not applicable
Available as measurement component?
No, but the function can be used on a schematic page, in a measurement equation.
Defined in
AEL, statistcal_fun.ael
See also
fun_2d_outer, mean_outer, min_outer

This function can be applied to the data in the example:
.../examples/Tutorial/DataAccess_prj/Truth_MonteCarlo.dds.

Description

The max function operates on the inner dimension of two-dimensional data. The
max_outer function just calls the fun_2d_outer function, with max being the applied
operation. As an example, assume that a Monte Carlo simulation of an amplifier was
run, with 151 random sets of parameter values, and that for each set the
S-parameters were simulated over 26 different frequency points. S21 becomes a [151
Monte Carlo iteration X 26 frequency] matrix, with the inner dimension being
frequency, and the outer dimension being Monte Carlo index. Now, assume that it is
desired to know the maximum value of the S-parameters at each frequency. Inserting
an equation max(S21) computes the maximum value of S21 at each Monte Carlo
iteration. If S21 is simulated from 1 to 26 GHz, it computes the maximum value over
this frequency range, which usually is not very useful. Inserting an equation
max_outer(S21) computes the maximum value of S21 at each Monte Carlo iteration.

3-135

MeasEqn Function Reference

mean

Purpose

Returns the mean
Synopsis

mean(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

mean([1, 2, 3])
2

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cum_prod, cum_sum, max, min, prod, sum

3-136

mean_outer
Purpose
Computes the mean across the outer dimension of two-dimensional data.
Synopsis
mean_outer(data)
where data must be two-dimensional data.
Example
mean_outer(data)
Used in
Not applicable
Available as measurement component?
No, but the function can be used on a schematic page, in a measurement equation.
Defined in
AEL, statistcal_fun.ael
See also

fun_2d_outer, max_outer, min_outer
This function can be applied to the data in the example:
.../examples/Tutorial/DataAccess_prj/Truth_MonteCarlo.dds.

Description

The mean function operates on the inner dimension of two-dimensional data. The
mean_outer function just calls the fun_2d_outer function, with mean being the
applied operation. As an example, assume that a Monte Carlo simulation of an
amplifier was run, with 151 random sets of parameter values, and that for each set
the S-parameters were simulated over 26 different frequency points. S21 becomes a
[151 Monte Carlo iteration X 26 frequency] matrix, with the inner dimension being
frequency, and the outer dimension being Monte Carlo index. Now, assume that it is
desired to know the mean value of the S-parameters at each frequency. Inserting an
equation mean(S21) computes the mean value of S21 at each Monte Carlo iteration.
If S21 is simulated from 1 to 26 GHz, it computes the mean value over this frequency
range, which usually is not very useful. Inserting an equation mean_outer(S21)
computes the mean value of S21 at each Monte Carlo frequency.

3-137

MeasEqn Function Reference

median

Purpose

Returns the median
Synopsis

median(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

median([1, 2, 3, 4])
2.5

Used in
Not applicable
Available as measurement component?

This function can only be entered by means of a Eqn component in the Data Display
window. There is no explicit measurement component.

Defined in
AEL, statistcal_fun.ael
See also

mean, sort

3-138

min

Purpose

Returns the minimum value of a swept parameter
Synopsis

y = min(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Examples

a = min([1, 2, 3]);
1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cum_prod, cum_sum, max, mean, prod, sum

3-139

MeasEqn Function Reference

min_index

Purpose

Returns the index of the minimum
Synopsis

y = min_index(x)

The function takes a single argument, so enclose a sequence of numbers in brackets
“[X, y’ ”‘]»

Example

min_index([3, 2, 1])
2

min_index([1, 2, 3])
0

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

max_index

3-140

min_outer
Purpose
Computes the minimum across the outer dimension of two-dimensional data.
Synopsis
min_outer(data)
where data must be two-dimensional data.
Example
min_outer(data)
Used in
Not applicable
Available as measurement component?
No, but the function can be used on a schematic page, in a measurement equation.
Defined in
AEL, statistcal_fun.ael
See also

fun_2d_outer, max_outer, mean_outer
This function can be applied to the data in the example:
.../examples/Tutorial/DataAccess_prj/Truth_MonteCarlo.dds.

Description

The min function operates on the inner dimension of two-dimensional data. The
min_outer function just calls the fun_2d_outer function, with min being the applied
operation. As an example, assume that a Monte Carlo simulation of an amplifier was
run, with 151 random sets of parameter values, and that for each set the
S-parameters were simulated over 26 different frequency points. S21 becomes a [151
Monte Carlo iteration X 26 frequency] matrix, with the inner dimension being
frequency, and the outer dimension being Monte Carlo index. Now, assume that it is
desired to know the minimum value of the S-parameters at each frequency. Inserting
an equation min(S21) computes the minimum value of S21 at each Monte Carlo
iteration. If S21 is simulated from 1 to 26 GHz, it computes the minimum value over
this frequency range, which usually is not very useful. Inserting an equation
min_outer(S21) computes the minimum value of S21 at each Monte Carlo iteration.

3-141

MeasEqn Function Reference

mix

Purpose

Returns a component of a spectrum based on a vector of mixing indices
Synopsis

mix(xOut, harmIndex{, Mix})

where xOut is a voltage or a current spectrum and harmIndex is the desired vector
of harmonic frequency indices (mixing terms). Mix is a variable consisting of all
possible vectors of harmonic frequency indices (mixing terms) in the analysis.

Example

y = mix(vOut, {2, -1})

z = mix(vOutxOut/50, {2, -1}, Mix)
Used in

Harmonic balance simulation
Available as measurement component?

This equation can be entered by means of a MeasEqn component in Harmonic
balance simulation palette in the Schematic window. There is no explicit Mix
measurement component.

Defined in
Built in
See also
find_index
Description

This function returns the mixing component of a voltage or a current spectrum
corresponding to particular harmonic-frequency indices or mixing terms. Note that
the third argument, Mix, is required whenever the first argument is a spectrum
obtained from an expression that operates on the voltage and/or current spectrums.

3-142

moving_average

Purpose

Returns the moving_average of a sequence of data
Synopsis

moving_average(data, numPoints)

where data is a one-dimensional sequence of numbers in brackets “[x, y, ...]”, and
numPoints is the number of points to be averaged together.

Example

moving_average([1, 2, 3, 7, 5, 6, 10], 3)
[1,2,4,5,6,7,10]

Used in

Not applicable

Available as measurement component?

There is no explicit measurement component, but the function can be used on a
schematic page.

Defined in

AEL, statistcal_fun.ael
See also

Not applicable
Description

The first value of the smoothed sequence is the same as the original data. The second
value is the average of the first three. The third value is the average of data elements
2, 3, and 4, etc. If numPoints were set to 7, for example, then the first value of the
smoothed sequence would be the same as the original data. The second value would
be the average of the first three original data points. The third value would be the
average of the first five data points, and the fourth value would be the average of the
first seven data points. Subsequent values in the smoothed array would be the
average of the seven closest neighbors. The last points in the smoothed sequence are
computed in a way similar to the first few points. The last point is just the last point
in the original sequence. The second from last point is the average of the last three

3-143

MeasEqn Function Reference

points in the original sequence. The third from the last point is the average of the last
five points in the original sequence, etc.

3-144

mu
Purpose
Returns the geometrically derived stability factor for the load
Synopsis
mu(S)
where S is a scattering matrix of a 2-port network.
Examples
x=mu(S)
Used in
Small-signal and large-signal S-parameter simulations.
Available as measurement component?
Mu
Defined in
AEL, circuit_fun.ael
See also
mu_prime
Description

This measurement gives the distance from the center of the Smith chart to the
nearest output (load) stability circle.

This stability factor is given by
mu = {1-1S111**%2} / {1 S22 - conj(S11)*Delta | + 1S12*S211 }

where Delta is the determinant of the S-parameter matrix. Having mu > 1 is the
single necessary and sufficient condition for unconditional stability of the 2-port
network.

Reference

[1]M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability
using geometrically derived parameters"”, IEEE Transactions on Microwave
Theory and Techniques, Vol. 40, No. 12, pp. 2303-2311, Dec. 1992.

3-145

MeasEqn Function Reference

mu_prime
Purpose
Returns the geometrically derived stability factor for the source
Synopsis
mu_prime(S)
where S is a scattering matrix of 2-port network.
Examples
y=mu_prime(S)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
MuPrime
Defined in
AEL, circuit_fun.ael
See also
mu
Description

This measurement gives the distance from the center of the Smith chart to the
nearest unstable-input (source) stability circle.

This stability factor is given by
mu_prime = {1-1S221**¥2} / {1 S11 - conj(S22)*Delta | + 1S21*S121 }

where Delta is the determinant of the S-parameter matrix. Having mu_prime > 1
is the single necessary and sufficient condition for unconditional stability of the
2-port network.

Reference

[1]M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability
using geometrically derived parameters”, IEEE Transactions on Microwave
Theory and Techniques, Vol. 40, No. 12, pp. 2303-2311, Dec. 1992.

3-146

ns_circle

Purpose

Returns noise-figure circles

Synopsis

ns_circle(nf, NFmin, Sopt, rn{, numOfPts})

where nf is the specified noise figure and is set by default to max(NFmin) + {0, 1,
2, 3}. NFmin is the minimum noise figure, Sopt is the optimum mismatch, rn is the
equivalent normalized noise resistance of a 2-port network (rn = Rn/zRef where
Rn is the equivalent noise resistance and zRef is the reference impedance), and
numOfPts is the desired number of points per circle and is set to 51 by default.

Example

circleData=ns_circle(0+NFmin, NFmin, Sopt, Rn/50, 51)
circleData=ns_circle({0, 1}+NFmin, NFmin, Sopt, Rn/50, 51)
returns the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
NsCircle

Defined in

AEL, circle_fun.ael

See also

Not applicable

Description

The expression generates constant noise-figure circles. The circles are defined by the
loci of the source-reflection coefficients that result in the specified noise figure.
NFmin, Sopt, and Rn are generated from noise analysis.

A circle is created for each value of the swept variable(s).

3-147

MeasEqn Function Reference

ns_pwr_int

Purpose

Returns the integrated noise power
Synopsis

ns_pwr_int(Sji, nf, resBW)

where Sji is the complex transmission coefficient, nf is noise figure at the output
port (in dB), and resBW is the user-defined resolution bandwidth.

Example

Y=ns_pwr_int(521, nf2, 1IMHz)

Used in

Small-signal S-parameter simulation
Available as measurement component?
NsPwrlInt

Defined in

AEL, rf_system_fun.ael

See also

ns_pwr_ref_bw, snr

Description

This is the integrated noise power (in dBm) calculated by integrating the noise power
over the entire frequency sweep. The noise power at each frequency point is
calculated by multiplying the noise spectral density by a user-defined resolution
bandwidth.

3-148

ns_pwr_ref_bw

Purpose

Returns noise power in a reference bandwidth
Synopsis

Y =ns_pwr_ref_bw(Sji, nf, resBW)

where Sji is the complex transmission coefficient, nf is noise figure at the output
port (in dB), and resBW is the user-defined resolution bandwidth.

Example

Y=ns_pwr_ref_bw(S21, nf2, 1IMHz)
returns the noise power with respect to the reference bandwidth.

Used in

Small-signal S-parameter simulation
Available as measurement component?
NsPwrRefBW

Defined in

AEL, rf_system_fun.ael

See also

ns_pwr_int, snr

Description

This is the noise power calculated by multiplying the noise spectral density at a
frequency point by a user-defined resolution bandwidth. Unlike NsPwrInt, this gives
the noise power (in dB) at each frequency sweep.

3-149

MeasEqn Function Reference

ones

Purpose

Returns a matrix of ones
Synopsis

Y=ones(2)

This is the ones matrix. If only one argument is supplied, then a square matrix is
returned. If two are supplied, then a matrix of ones with size rows X cols is returned.

Example

a = ones(2)
{1, 1}, {1, 13}

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

identity, zeros

3-150

pae
Purpose
Returns power-added efficiency
Synopsis

pae(vPlusOut, vMinusOut, vPlusIn, vMinusIn, vPlusDC, vMinusDC, iOut, iln, iDC,
outFreq, inFreq)

where vPlusOut and vMinusOut are output voltages at the positive and negative
terminals; vPlusIn and vMinusIn are input voltages at the positive and negative
terminals; vPlusDC and vMinusDC are DC voltages at the positive and negative
terminals; iOut, iIn, and iDc are the output, input, and DC currents, respectively;
and outFreq and inFreq are harmonic indices of the fundamental frequency at the
output and input port, respectively.

Example

y=pae(vOut, 0, vIn, 0, v1, 0, I_Probel.i, I_Probe2.i, I_Probe3.i, 1, 1)
Used in

Harmonic balance simulation
Available as measurement component?
PAE

Defined in

AEL, circuit_fun.ael

See also

dB, dBm

Description

This measurement computes the power-added efficiency (in percent) of any part of
the circuit.

3-151

MeasEqn Function Reference

pdf

Purpose

Returns a probability density function
Synopsis

pdf(x, numBins, minBin, maxBin)

where x is the signal, numBins is number of subintervals or bins used to measure
PDF, and minBin and maxBin are the beginning and end, respectively, of the
evaluation of the PDF.

Example

y = pdfidata)

y = pdfidata, 20)

Used in

Not applicable

Available as measurement component?

This function can be entered by means of a Eqn component in the Data Display
window. There is no measurement component in schematic window

Defined in

AEL statistical_fun.ael
See also

cdf, histogram, yield_sens
Description

This function measures the probability density function of a signal. The default
values for minBin and maxBin are the minimum and the maximum values of the
data and numBins is set to log(numOfPts)/1og(2.0) by default.

3-152

permute

Purpose

Permutes data based on the attached independents
Synopsis

y = permute(data, permute_vector)

where data is any N-dimensional square data (all inner independents must have
the same value N) and permute_vector is any permutation vector of the numbers 1
through N. The permute_vector defaults to {N::1}, representing a complete
reversal of the data with respect to its independent variables. If permute_vector
has fewer than N entries, the remainder of the vector, representing the outer
independent variables, is filled in. In this way, expressions remain robust when
outer sweeps are added.

Examples

a = permute(data)
a = permute(data, {3, 2, 1})
reverses the (three inner independents of) the data.

a = permute(data, {1, 2, 3})
preserves the data.

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

None

3-153

MeasEqn Function Reference

pfc

Purpose

Returns frequency-selective power
Synopsis

pfc(vPlus, vMinus, iOut, harm_freq_index)

where vPlus is the voltage at the positive and negative terminals, iOut is the
current through a branch, and harm_freq_index is the harmonic index of the
desired frequency. Note that the harm_freq_index argument's entry should reflect
the number of tones in the harmonic balance controller. For example, if one tone is
used in the controller, there should be one number inside the braces; two tones
would require two numbers separated by a comma.

Example

The following example is for two tones in the harmonic balance controller:
y=pfc(vOut, 0, I_Probel.i, {1, 0})

Used in

Harmonic balance simulation
Available as measurement component?
Pfc

Defined in

AEL, circuit_fun.ael

See also

ifc, vfc

Description

This measurement gives the RMS power value of one frequency component of a
harmonic balance waveform.

3-154

pfc_tran

Purpose

Returns frequency-selective power

Synopsis

pfc_tran(vPlus, vMinus, iOut, fundFreq, harmNum)

where vPlus and vMinus are the voltages at the positive terminals, iOut is the
current through a branch measured for power calculation, and fundFreq is
fundamental frequency and harmNum is the harmonic number of the
fundamental frequency (positive integer value only).

Example

y=pfc_tran(vl, v2, I_Probel.i, 1GHz, 1)
Used in

Transient simulation

Available as measurement component?
PfcTran

Defined in

AEL, circuit_fun.ael

See also

ifc_tran, vfc_tran

Description

This measurement gives RMS power, delivered to any part of the circuit at a
particular frequency of interest. fundFreq determines the portion of the time-domain
waveform to be converted to frequency domain. This is typically one full period
corresponding to the lowest frequency in the waveform. harmNum is the harmonic
number of the fundamental frequency at which the power is requested.

3-155

MeasEqn Function Reference

phase

Purpose

Phase in degrees
Synopsis

y = phase(x)
Example

phase(1i)
90

phase(1+1i)
45

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built-in

See also

phaserad

3-156

phase_comp

Purpose

Returns the phase compression (phase change)
Synopsis

Y = phase_comp(Sji)

where Sji is a power-dependent parameter obtained from large-signal
S-parameters simulation.

Example

y=phase_comp(S21[::, 0])

Used in

Large-signal S-parameter simulations
Available as measurement component?
PhaseComp

Defined in

AEL, rf_systems_fun.ael

See also

gain_comp

Description

This measurement calculates the small-signal minus the large-signal phase, in
degrees. The first power point (assumed to be small) is used to calculate the
small-signal phase.

3-157

MeasEqn Function Reference

phasedeg
Purpose

Phase in degrees
Synopsis

y = phasedeg(x)
Example

phase(1i)
90

phase(1+1i)
45

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built-in

See also

dev_lin_phase, diff, phase, phasedeg, phaserad, ripple, unwrap

3-158

phaserad
Purpose

Phase in Radians
Synopsis

y = phaserad(x)
Example

phaserad(1i)
1.5708

phaserad(1+1i)
0.785398

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

dev_lin_phase, diff, phase, phasedeg, phaserad, ripple, unwrap

3-159

MeasEqn Function Reference

plot_vs

Purpose

Attaches an independent to data for plotting
Synopsis

plot_vs(dependent, independent)

where dependent is any N-dimensional square data (all inner independents must
have the same value N) and permute_vector is any permutation vector of the
numbers 1 through N. The permute_vector defaults to {N::1}, representing a
complete reversal of the data with respect to its independent variables. If
permute_vector has fewer than N entries, the remainder of the vector,
representing the outer independent variables, is filled in. In this way, expressions
remain robust when outer sweeps are added.

Example

a=[1, 2, 3]
b=[4, 5, 6]
c=plot_vs(a, b)

Builds ¢ with independent b, and dependent a.
Used in

Not applicable

Available as measurement component?

Not applicable

Defined in

AEL, display_fun.ael

See also

indep, vs

3-160

polar

Purpose

Builds a complex number from magnitude and angle (in degrees)

Synopsis
polar(mag, angle)
Example

polar(1, 90)
0+11

polar(1, 45)
0.707107+0.707107i

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

None

3-161

MeasEqn Function Reference

pow
Purpose
Raises an integer or real number to a given power
Synopsis
z = pow(X, y)
where x is the integer or real number and y is the exponent of that number.
Examples
a = pow(4, 2);
returns 16
Used in
Not applicable
Available as measurement component?
Not applicable
Defined in
Built in
See also

abs, cint, exp, float, int, log10, sgn, sqrt

3-162

pspec
Purpose

Returns power frequency spectrum
Synopsis

pspec(vPlus, vMinus, iOut)

where vPlus and vMinus are voltages at the positive terminals, and iOut is the
current through a branch measured for power calculation.

Example

y=pspec(vOut, 0, I_Probel.i)
Used in

Harmonic balance simulation
Available as measurement component?
Pspec

Defined in

AEL, circuit_fun.ael

See also

Not applicable

Description

This measurement gives a power frequency spectrum in harmonic balance analyses.

3-163

MeasEqn Function Reference

pspec_tran

Purpose

Returns transient power spectrum

Synopsis

pspec_tran(vPlus, vMinus, iOut, fundFreq, numHarm)

where vPlus and vMinus are the voltages at the positive and negative terminals,
iOut is the current through a branch measured for power calculation, fundFreq is
the fundamental frequency, and numHarm is the number of harmonics of the
fundamental frequency (positive integer value only).

Example

y=pspec_tran(vl, v2, I_Probel.i, 1GHz, 8)
Used in

Transient simulation

Available as measurement component?
PspecTran

Defined in

AEL, circuit_fun.ael

See also

ispec_tran, vspec_tran

Description

This measurement gives a power spectrum, delivered to any part of the circuit. The
measurement gives a set of RMS power values at each frequency. fundFreq is the
fundamental frequency determines the portion of the time-domain waveform to be
converted to frequency domain (typically one full period corresponding to the lowest
frequency in the waveform). numHarm is the number of harmonics of the
fundamental frequency to be included in the power spectrum.

3-164

prod

Purpose

Returns the product
Synopsis

prod(x)

Example

prod([1, 2, 3]
6

prod([4, 4, 4])
64

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built-in

See also

sum

3-165

MeasEqn Function Reference

pt

Purpose

Returns total power
Synopsis

pt(vPlus, vMinus, iOut)

where vPlus and vMinus are the voltages at the positive and negative terminals,
respectively, and iOut is the current through a branch.

Example

y=pt(vOut, 0, I_Probel.i)
Used in

Harmonic balance simulation
Available as measurement component?
Pt

Defined in

AEL, circuit_fun.ael

See also

pspec

Description

This measurement calculates the total power of a harmonic balance frequency
spectrum.

3-166

pwr_gain

Purpose

Returns power gain
Synopsis

y= pwr_gain(S, Zs, Zl{, Zref})

where S is the 2 x 2 scattering matrix, and Zs and ZI are the input and output
impedances, respectively. Zref is the reference impedance, set by default to the
port impedance.

Example

y=pwr_gain(S, 50, 75)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?
PwrGain

Defined in

AEL, rf_system_fun.ael

See also

stos, volt_gain, volt_gain_max
Description

This measurement is used to determine the power gain (in dB), i.e. the power
delivered to the load minus the power available from the source (where power is in
dBm).

3-167

MeasEqn Function Reference

rad

Purpose

Degrees to radians
Synopsis

rad(x)

Example

rad(90)
1.5708

rad(45)
0.785398

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

deg

3-168

real

Purpose

Returns the real part of a complex number

Synopsis
y = real(x)
where x is a complex number.
Examples
a = real(1-1j);
returns 1
Used in
Not applicable
Available as measurement component?
Not applicable
Defined in
Built in
See also

cmplx, imag

3-169

MeasEqn Function Reference

relative_noise_bw
Purpose

Computes the relative noise bandwidth of the smoothing windows used by the fs()
function

Synopsis
RelNoiseBW=relative_noise_bw(winType, winConst)
where

winType is a window type and must be one of the following: Kaiser, Hamming,
Gaussian, 8510, or NoWindow (leaving this field blank is the equivalent of
NoWindow); and

winConst is an optional parameter that affects the shape of the applied window.
The default window constants are as follows:

Kaiser: 7.865
Hamming: 0.54
Gaussian: 0.75

8510: 6 (The 8510 window is the same as a Kaiser window with a window
constant of 6.)

Example
Example equations

winType = Kaiser

winConst = 8

relNoiseBW = relative_noise_bw(winType, winConst)

Vfund=vOut[1]

VoltageSpectralDensity = 0.5 * fs(Vfund, , , , , winType, winConst)
PowerSpectralDensity = 0.5 * mag(VoltageSpectralDensity**2)/50/relNoise BW

where vOut is the named connection at a 50-ohm load, and it is an output from a
Circuit Envelope simulation.

3-170

Note vOut is a named connection on the schematic. Assuming that a Circuit
Envelope simulation was run, vOut is output to the dataset as a two-dimensional
matrix. The first dimension is time, and there is a value for each time point in the
simulation. The second dimension is frequency, and there is a value for each
fundamental frequency, each harmonic, and each mixing term in the analysis, as well
as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the lowest
non-baseband frequency (the fundamental analysis frequency, unless a multitone
analysis has been run and there are mixing products). For former MDS users, the
notation "vOut[*, 2]" in MDS corresponds to the ADS notation of "vOut[1]".

Used in
The following functions: acpr_vi, acpr_vr, channel_power_vi, channel_power_vr
Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit relative noise bandwidth
measurement function.

Defined in
hpeesof/expressions/ael/digital_wireless_fun.ael

See also

acpr_vi, acpr_vr, channel_power_vi, channel_power_vr, fs
Description

The relative noise bandwidth function is used to account for the fact that as windows
are applied, the effective noise bandwidth increases with respect to the normal
resolution bandwidth. The resolution bandwidth is determined by the time span and
not by the displayed frequency resolution.

3-171

MeasEqn Function Reference

ripple
Purpose
Returns deviation from the average
Synopsis
ripple(x)
where x can be a gain or group delay data over a given frequency range.
Example
y=ripple(pwr_gain(S21))
Used in
Not applicable
Available as measurement component?
GainRipple
Defined in
AEL, elementary_fun.ael
See also
dev_lin_phase, diff, mean, phasedeg, phaserad, unwrap
Description

This function measures the deviation of x from the average of x.

3-172

round

Purpose

Rounds to the nearest integer
Synopsis

round(x)

Example

round(0.1)
0

round(0.5)
1

round(0.9)
1

round(-0.1)
0

round(-0.5)
-1

round(-0.9)
-1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

int

3-173

MeasEqn Function Reference

s_stab_circle

Purpose

Returns source (input) stability circles
Synopsis

s_stab_circle(S{, numOfPts})

where S is the scattering matrix of a 2-port network and numOfPts is the desired
number of points per circle and is set to 51 by default.

Example

circleData = s_stab_circle(S, 51)
returns the points on the circle(s).

Used in

Small-signal S-parameter simulations
Available as measurement component?
S_StabCircle

Defined in

AEL, circle_fun.ael

See also

1_stab_circle, 1_stab_region, s_stab_region
Description

This expression generates source stability circles. The circles are defined by the loci of
source-reflection coefficients where the magnitude of the load-reflection coefficient is
1.

A circle is created for each value of the swept variable(s). This measurement is
supported for 2-port networks only.

3-174

s_stab_region
Purpose
Indicates the region of stability of the source (input) stability circle
Synopsis
s_stab_region(S)
where S is the scattering matrix of a 2-port network.
Example

region = s_stab_region(S)
returns “Outside” or “Inside”.

Used in

Small-signal S-parameter simulations
Available as measurement component?
Not applicable

Defined in

AEL, circle_fun.ael

See also

1_stab_circle, 1_stab_region, s_stab_circle
Description

This expression returns a string identifying the region of stability of the
corresponding source stability circle.

3-175

MeasEqn Function Reference

sample_delay_pi4dgpsk
Purpose

This function calculates the optimal sampling point within a symbol for a given
pi4ddqpsk waveform.

Synopsis
sample_delay_pi4dqpsk(vlQ, symbolRate, delay, timeResolution)
where
vlQ is the complex envelope (I +j * Q) of a pi/4 DQPSK signal.
symbolRate is the symbol rate of the pi/4 DQPSK signal.

path is the time delay on the waveform before the sampling starts. If the delay is 0,
this parameter may be omitted. If it is non-zero, enter the delay value. This can be
calculated using the function delay_path().

timeResolution is the time step (typically one-tenth of a symbol time or less) used
to search for the best sampling point in a given symbol period.

Example

a = sample_delay_pi4dqpsk(vout[1], 25e3, 1.5e-6, 0.15e-6)
Used in

Envelope simulation

Available as measurement component?
Not applicable

Defined in

Built in

See also

ber_pi4dqpsk, ber_qpsk, const_evm
Description

Calculates the optimal sampling point for a given waveform. "Optimal" is defined as
the sampling point that provides the lowest bit error rate.

3-176

sample_delay_gpsk
Purpose

This function calculates the optimal sampling point within a symbol for a given
QPSK waveform.

Synopsis
sample_delay_qpsk(vlQ, symbolRate, delay, timeResolution)
where
vlQ is the complex envelope (I +j * Q) of a QPSK signal.
symbolRate is the symbol rate of the QPSK signal.

path is the time delay on the waveform before the sampling starts. If the delay is 0,
this parameter may be omitted. If it is non-zero, enter the delay value. This can be
calculated using the function delay_path().

timeResolution is the time step (typically one-tenth of a symbol time or less) used
to search for the best sampling point in a given symbol period.

Example

a = sample_delay_qpsk(vout[1], 25e3, 1.5e-6, 0.15e-6)
Used in

Envelope simulation

Available as measurement component?
Not applicable

Defined in

Built in

See also

ber_pi4dqpsk, ber_qpsk, const_evm
Description

Calculates the optimal sampling point for a given waveform. "Optimal" is defined as
the sampling point that provides the lowest bit error rate.

3-177

MeasEqn Function Reference

set_attr

Purpose

Sets a data attribute

Synopsis

a = set_attr(data, "attr_name", attribute_value)
Example

set_attr(data, "TraceType", "Spectral")
set_attr(data, "TraceType", 10GHz)
Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

get_attr

3-178

sfdr

Purpose

Returns the spurious-free dynamic range

Synopsis

sfdr(vOut, ssgain, nf, noiseBW, fundFreq, imFreq, zRef)

where vOut is the output voltage, ssgain is the small-signal gain (in dB), nf is the
noise figure at the output port, noiseBW is the noise bandwidth, fundFreq and

imFreq are the harmonic frequency indices for the fundamental and

intermodulation frequencies, respectively, and zRef is the reference impedance.

Example

y=sfdr(vIn, 12, nf2, , {1, 0}, {2, -1}, 50)

Used in

Small-signal S-parameter simulations
Available as measurement component?
SFDR

Defined in

AEL, rf_system_fun.ael

See also

ip3_out

Description

This measurement determines the spurious-free dynamic-range ratio for noise power
with respect to the reference bandwidth. zRef is an optional parameter that, if not

specified, is set to 50.0 ohms.

3-179

MeasEqn Function Reference

sgn
Purpose
Returns the integer sign of an integer or real number, as either 1 or —1
Synopsis
y = sgn(x)

where x is an integer or real number.
Examples

a = sgn(-1)
returns —1

a=sgn(1)
returns 1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, exp, float, int, log10, pow, sqrt

3-180

sin

Purpose

Returns the sine of an integer or real number
Synopsis

y = sin(x)

where x is an integer or real number, in radians.

Examples

a = sin(pi/2)
returns 1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cos, tan

3-181

MeasEqn Function Reference

sinc
Purpose
Returns the sinc of an integer or real number
Synopsis
y = sinc(x)

where x is an integer or real number, in radians.
Examples

a = sinc(0.5)
0.637

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

sin

Description

The sinc function is defined as sinc(x) = sin(pi*x)/ (pi*x) and sinc(0)=1.

3-182

sinh

Purpose
hyperbolic sin
Synopsis
sinh()
Example

sinh(0)
0

sinh(1)
1.1752

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cosh, tanh

3-183

MeasEqn Function Reference

size

Purpose

Returns the row and column size of a vector or matrix
Synopsis

Y = size(X)

Example

Given 2-port S-parameters versus frequency, and given 10 frequency points. Then for
ten 2 x 2 matrices, size() returns the dimensions of the S-parameter matrix, and its
companion function sweep_size() returns the size of the sweep:

size(S)
returns {2, 2}

sweep_size(S)
returns 10

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

sweep_size

3-184

sm_gammal

Purpose

Returns the simultaneous-match input-reflection coefficient

Synopsis
sm_gammal(S)
where S is a scattering matrix of 2-port network.
Example
y=sm_gammal(S)

Used in

Small-signal and large-signal S-parameter simulations.

Available as measurement component?
SmGammal

Defined in

AEL, circuit_fun.ael

See also

max_gain, sm_gammaZ2, stab_fact, stab_meas

Description

This complex measurement determines the reflection coefficient that must be

presented to the input (port 1) of the network to achieve simultaneous input and
output reflections. If the Rollett stability factor stab_fact(S) is less than unity for the
analyzed circuit, then sm_gammal(S) returns zero. It is, in effect, undefined when

stab_fact(S) < 1.

3-185

MeasEqn Function Reference

sm_gamma?2

Purpose

Returns the simultaneous-match output-reflection coefficient

Synopsis
sm_gamma2(S)
where S is a scattering matrix of 2-port network.
Example
y=sm_gamma2(S)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
SmGamma2
Defined in
AEL, rf_system_fun.ael
See also
max_gain, sm_gammal, stab_fact, stab_meas

Description

This complex measurement determines the reflection coefficient that must be
presented to the output (port 2) of the network to achieve simultaneous input and
output reflections. If the Rollett stability factor stab_fact(S) is less than unity for the
analyzed circuit, then sm_gamma2(S) returns zero. It is, in effect, undefined when

stab_fact(S) < 1.

3-186

sm_yl
Purpose
Returns the simultaneous-match input admittance
Synopsis
sm_y1(S, Z)
where S is a scattering matrix of a 2-port network, and Z is a port impedance.
Example
y=sm_y1(S, 50)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
SmY1
Defined in
AEL, rf_system_fun.ael
See also
sm_y2
Description

This complex measurement determines the admittance that must be presented to the
input (port 1) of the network to achieve simultaneous input and output reflections.

3-187

MeasEqn Function Reference

sm_y2

Purpose

Returns the simultaneous-match output admittance
Synopsis

sm_y2(S, Z)

where S is a scattering matrix of 2-port network.and
Z is a port impedance.

Example

y=sm_y2(S, 50)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?
SmY2

Defined in

AEL, circuit_fun.ael

See also

sm_yl

Description

This complex measurement determines the admittance that must be presented to the
input (port 2) of the network to achieve simultaneous input and output reflections.

3-188

sm_z1
Purpose
Returns the simultaneous-match input impedance
Synopsis
sm_z1(S, Z)
where S is a scattering matrix of a 2-port network, and Z is a port impedance.
Example
y=sm_z1(S, 50)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
SmZ1
Defined in
AEL, circuit_fun.ael
See also
sm_z2
Description

This complex measurement determines the impedance that must be presented to the
input (port 1) of the network to achieve simultaneous input and output reflections.

3-189

MeasEqn Function Reference

sm_z2
Purpose
Returns the simultaneous-match output impedance
Synopsis
Y =sm_z2(S, Z)
where S is a scattering matrix of 2-port network, and Z is a port impedance.
Example
y=sm_z2(S, 50)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
SmZ2
Defined in
AEL, circuit_fun.ael
See also
sm_z1
Description

This complex measurement determines the impedance that must be presented to the
output (port 2) of the network to achieve simultaneous input and output reflections.

3-190

snr

Purpose

Returns the signal-to-power noise ratio
Synopsis

snr(vOut, vOut.noise{, fundFreq})

where vOut and vOut.noise are the signal and noise voltages at the output port,
and fundFreq is the harmonic frequency index for the fundamental frequency.
Note that fundFreq is not optional; it is required for harmonic balance
simulations, but it is not applicable in AC simulations.

Example

y=snr(vOut, vOut.noise, {1, 0})
returns the signal-to-power noise ratio for a harmonic balance simulation.

y=snr(vOut, vOut.noise)
returns the signal-to-power noise ratio for an AC simulation.

Used in

Harmonic balance simulations
Available as measurement component?
SNR

Defined in

AEL, rf_system_fun.ael

See also

ns_pwr_int, ns_pwr_ref _bw
Description

This measurement gives the ratio of the output signal power (at the fundamental
frequency for a harmonic balance simulation) to the total noise power (in dB).

3-191

MeasEqn Function Reference

sort

Purpose

Returns a sorted variable
Synopsis

sort(data, sortOrder, indepName)

where data is a multidimensional scalar variable, sortOrder is the sorting order,
{“ascending”, "decending”}. (If not specified, it is set to “ascending.”) indepName is
used to specify the name of the independent variable for sorting. (If not specified,
the sorting is done on the dependent.)

Example

y = sort(data)

y = sort(data, "decending”, "freq”)
Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

None

Description

This measurement returns a sorted variable in ascending or descending order. The
sorting can be done on the independent or dependent variables. String values are
sorted by folding them to lower case.

3-192

spec_power
Purpose

Returns the integrated signal power (dBm) of a spectrum

Synopsis

spec_power(sinkInstanceName{, lowerFrequencyLimit, upperFrequencyLimit})

where sinkInstanceName is the instance of the FFTAnalyzer or SpecAnalyzer sink
in the DSP schematic window (values in dBm). lowerFrequencyLimit and
upperFrequencyLimit are optional and define the lower and upper frequency
limits to be used in calculating the integrated power. The frequency unit used
must match that used in SpecAnalyzer. The default unit is MHz. The entire
spectral frequency range will be used if lowerFrequencyLimit and
upperFrequencyLimit are not specified.

Example

total_power=spec_power(Mod_Spectrum, 60, 71)
returns the integrated power between 60 and 71 MHz

total_power=spec_power(Mod_Spectrum, indep(m1), indep(m2))
returns the integrated power between markers 1 and 2

where Mod_Spectrum is the instance ID of an FFTAnalyzer or SpecAnalyzer sink
Used in
Agilent Ptolemy simulations
Available as measurement component?
This function is available for use in a MeasEqn component.
Defined in
AEL, signal_proc_fun.ael
See also
None
Description

This function will return the total integrated power (dBm) of a spectrum. The
frequency window over which the integrated power will be calculated can be
specified, otherwise the entire spectral frequency range will be used.

3-193

MeasEqn Function Reference

The FFTAnalyzer and SpecAnalyzer sinks are valid for this measurement. These
sinks should have a termination resistor shunted to ground at their input for a
measurement referenced to an impedance such as 50 Ohms. This termination
resistor value should be set to the Ref_Resistance value specified in the FFTAnalyzer
or SpecAnalyzer sink. The display parameter of the sinks must be set to dBm.

3-194

spur_track
Purpose

Returns the maximum power of all signals appearing in a user-specifiable IF band, as
a single RF input signal is stepped. If there is no IF signal appearing in the specified
band, for a particular RF input frequency, then the function returns an IF signal
power of -500 dBm.

Synopsis
IFspur=spur._track(vs(vout, freq), if_low, if_high, rout)

where vout is the IF output node name, if_low is the lowest frequency in the IF
band, if_high is the highest frequency in the IF band, rout is the load resistance
connected to the IF port, necessary for computing power delivered to the load.
IFspur computed above will be the power in dBm of the maximum signal
appearing in the IF band, versus RF input frequency. Note that it would be easy to
modify the function to compute dBV instead of dBm.

Example
IFspur=spur_track(vs(HB.VIF1, freq), Fiflow[0, 0], Fifhigh[0, 0], 50)

where VIF1 is the named node at the IF output, Fiflow is the lowest frequency in
the IF band, Fifhigh is the highest frequency in the IF band, and 50 is the IF load
resistance. Fiflow and Fithigh are passed parameters from the schematic page
(although they can be defined on the data display page instead.) These
parameters, although single-valued on the schematic, become matrices when
passed to the dataset, where each element of the matrix has the same value. The
[0, O] syntax just selects one element from the matrix.

Used in

Receiver spurious response simulations

Available as measurement component?

No, but the function can be used on a schematic page, in a measurement equation.
Defined in

AEL, digital_wireless_fun.ael

See also

spur_track_with_if

3-195

MeasEqn Function Reference

This function can be applied to the data in the example:
.../examples/Com_Sys/Spur_Track_prj/MixerSpurs2MHz.dds.

Description.

This function is meant to aid in testing the response of a receiver to RF signals at
various frequencies. This function shows the maximum power of all signals
appearing in a user-specifiable IF band, as a single RF input signal is stepped. There
could be fixed, interfering tones present at the RF input also, if desired. The
maximum IF signal power may be plotted or listed versus the stepped RF input
signal frequency. If there is no IF signal appearing in the specified band, for a
particular RF input frequency, then the function returns an IF signal power of -500
dBm.

3-196

spur_track_with_if
Purpose

Returns the maximum power of all signals appearing in a user-specifiable IF band, as
a single RF input signal is stepped. In addition, it shows the IF frequencies and
power levels of each signal that appears in the IF band, as well as the corresponding
RF signal frequency.

Synopsis
IFspur=spur_track_with_if(vs(vout, freq), if_low, if_high, rout)

where vout is the IF output node name, if_low is the lowest frequency in the IF
band, if_high is the highest frequency in the IF band, rout is the load resistance
connected to the IF port, necessary for computing power delivered to the load.
IFspur computed above will be the power in dBm of the maximum signal
appearing in the IF band, versus RF input frequency. Note that it would be easy to
modify the function to compute dBV instead of dBm.

Example
IFspur=spur_track_with_if(vs(HB.VIF1, freq), Fiflow[0, 0], Fifhigh[0, 0], 50)

where VIF1 is the named node at the IF output, Fiflow is the lowest frequency in
the IF band, Fifhigh is the highest frequency in the IF band, and 50 is the IF load
resistance. Fiflow and Fithigh are passed parameters from the schematic page
(although they can be defined on the data display page instead.) These
parameters, although single-valued on the schematic, become matrices when
passed to the dataset, where each element of the matrix has the same value. The
[0, O] syntax just selects one element from the matrix.

Used in

Receiver spurious response simulations

Available as measurement component?

No, but the function can be used on a schematic page, in a measurement equation.
Defined in

AEL, digital_wireless_fun.ael

See also

spur_track

3-197

MeasEqn Function Reference

This function can be applied to the data in the example:
.../examples/Com_Sys/Spur_Track_prj/MixerSpurs2MHz.dds.

Description

This function is meant to aid in testing the response of a receiver to RF signals at
various frequencies. This function, similar to the spur_track function, shows the
maximum power of all signals appearing in a user-specifiable IF band, as a single RF
input signal is stepped. In addition, it shows the IF frequencies and power levels of
each signal that appears in the IF band, as well as the corresponding RF signal
frequency. There could be fixed, interfering tones present at the RF input also, if
desired. The maximum IF signal power may be plotted or listed versus the stepped
RF input signal frequency.

3-198

sqrt

Purpose

Returns the square root of a positive integer or real number

Synopsis
y = sqrt(x)

where x is a positive integer or real number.
Examples

a = sqrt(4)
returns 2

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

abs, cint, exp, float, int, log10, pow, sgn

3-199

MeasEqn Function Reference

stab_fact
Purpose
Returns the Rollett stability factor
Synopsis
stab_fact(S)
where S is the scattering matrix of a 2-port network.
Example
k = stab_fact(S)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
StabFact
Defined in
AEL, rf_system_fun.ael
See also
max_gain, sm_gammal, sm_gamma2, stab_meas

Description

Given a 2 x 2 scattering matrix between the input and measurement ports, this

function calculates the stability factor.

The Rollett stability factor is given by

k ={1- IS111#**2 - 1S22**2 + | S11*S22 - S12*S21 | **2} / {2*1S12*S21 1}

The necessary and sufficient conditions for unconditional stability are that the
stability factor is greater than unity and the stability measure is positive.

Reference

[1] Guillermo Gonzales, Microwave Transistor Amplifiers, second edition,

Prentice-Hall, 1997.

3-200

stab_meas
Purpose
Returns the stability measure
Synopsis
stab_meas(S)
where S is the scattering matrix of a 2-port network.
Example
b = stab_meas(S)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
StabMeas
Defined in
AEL, rf_system_fun.ael
See also
max_gain, sm_gammal, sm_gamma2, stab_fact
Description

Given a 2 x 2 scattering matrix between the input and measurement ports, this
function calculates the stability measure.

The stability measure is given by
b =1+ IS111#%2 - 1S22]#%2 - |S11*S22 - S12*S21 | **2

The necessary and sufficient conditions for unconditional stability are that the
stability factor is greater than unity and the stability measure is positive.

Reference

[1] Guillermo Gonzales, Microwave Transistor Amplifiers, second edition,
Prentice-Hall, 1997.

3-201

MeasEqn Function Reference

stddev

Purpose

Returns the standard deviation
Synopsis

stddev(x{, flag})

where x is the data and flag is used to indicate how stddev normalizes. By default,
flag is set to 0, which means that stddev normalizes by N-1, where N is the length
of the data sequence. Otherwise, stddev normalizes by N.

Example

y = stddev(data)

y = stddev(data, 1)

Used in

Not applicable

Available as measurement component?

This function can only be entered by means of a Eqn component in the Data Display
window.

Defined in

AEL, statistical_fun.ael
See also

mean

Description

This function calculates the standard deviation of the data.

3-202

stoabcd

Purpose

Performs S-to-ABCD conversion
Synopsis

stoabed(S, zRef)

where S is a scattering matrix of a 2-port network and zRef is a reference
impedance.

Example

a = stoabced(S, 50)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

abcedtoh, stoh, stoy
Description

This measurement transforms the scattering matrix of a 2-port network to a chain
(ABCD) matrix.

3-203

MeasEqn Function Reference

stoh

Purpose

Performs S-to-H conversion
Synopsis

stoh(S, zRef)

where S is a scattering matrix of a 2-port network and zRef is a reference
impedance.

Example

h = stoh(S, 50)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

htos, stoabcd, stoy
Description

This measurement transforms the scattering matrix of a 2-port network to a hybrid
matrix.

3-204

stos

Purpose

Performs S-to-S conversion
Synopsis

stos(S, zRef, zNew)

where S is a scattering matrix, zRef is a normalizing impedance, and zNew is a
new normalizing impedance.

Example

y = stos(S, 50, 75)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoy, stoz

Description

This function changes the normalizing impedance of a scattering matrix.

3-205

MeasEqn Function Reference

stoy

Purpose

Performs S-to-Y conversion
Synopsis

stoy(S, zRef)

where S is a scattering matrix of a 2-port network and zRef is a reference
impedance.

Example

y = stoy (S, 50.0)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoh, stoz, ytos
Description

This measurement transforms a scattering matrix to an admittance matrix.

3-206

stoz
Purpose
Performs S-to-Z conversion
Synopsis
stoz(S, Z0)
where S is a scattering matrix of a 2-port network and z0 is a reference impedance.
Example
z = stoz(S, 50)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoh, stoy, ztos
Description

This measurement transforms a scattering matrix to an impedance matrix.

3-207

MeasEqn Function Reference

sum

Purpose
Returns the sum
Synopsis

Y = sum(X)
Example

a =sum((1, 2, 3])
returns 6

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

max, mean, min

3-208

sweep_dim

Purpose

Returns the dimensionality of the data
Synopsis

sweep_dim(x)

Example

sweep_dim(1)
0

sweep_dim([1, 2, 3])
1

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

sweep_size

3-209

MeasEqn Function Reference

sweep_size

Purpose

Returns the sweep size of a data object
Synopsis

Y = sweep_size(X)

This function returns a vector with an entry corresponding to the length of each
sweep.

Example

Given 2-port S-parameters versus frequency, and given 10 frequency points, there are
then ten 2 x 2 matrices. sweep_size() is used to return the sweep size of the
S-parameter matrix, and its companion function size() returns the dimensions of the
S-parameter matrix itself:

a=sweep_size(S)
returns 10

size(S)
returns {2, 2}

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

size, sweep_dim

3-210

tan

Purpose

Returns the tangent of an integer or real number

Synopsis
y = tan(x)

where x is an integer or real number, in radians.

Examples

a = tan(pi/4)
returns 1

a = tan(+/-pi/2)
returns +/- 1.633E16

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

cos, sin

3-211

MeasEqn Function Reference

tanh

Purpose
hyperbolic tangent
Synopsis

tanh(x)

Example

tanh(0)
0

tanh(1)
0.761594

tanh(-1)
-0.761594

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

sinh, cosh

3-212

trajectory
Purpose

Generates the trajectory diagram from I and Q data, which are usually produced by a
Circuit Envelope simulation

Synopsis
Traj = trajectory(i_data, q_data)
where

i_data is the in-phase component of data versus time of a single complex voltage
spectral component (for example, the fundamental). This could be a baseband
signal instead, but in either case it must be real valued versus time.

g_data is the quadrature-phase component of data versus time of a single complex
voltage spectral component (for example, the fundamental). This could be a
baseband signal instead, but in either case it must be real valued versus time

Examples

Rotation = -0.21

Vfund=vOut[1] *exp(j * Rotation)
Vimag = imag(Vfund)

Vreal = real(Vfund)

Traj = trajectory(Vreal, Vimag)

where Rotation is a user-selectable parameter that rotates the trajectory diagram
by that many radians, and vOut is the named connection at a node.

3-213

MeasEqn Function Reference

Note vOut is a named connection on the schematic. Assuming that a Circuit
Envelope simulation was run, vOut is output to the dataset as a two-dimensional
matrix. The first dimension is time, and there is a value for each time point in the
simulation. The second dimension is frequency, and there is a value for each
fundamental frequency, each harmonic, and each mixing term in the analysis, as well
as the baseband term.

vOut[1] is the equivalent of vOut[::, 1], and specifies all time points at the lowest
non-baseband frequency (the fundamental analysis frequency, unless a multitone
analysis has been run and there are mixing products). For former MDS users, the
notation "vOut[*, 2]" in MDS corresponds to the ADS notation of "vOut[1]".

Used in
Trajectory diagram generation
Available as measurement component?

Equations listed under Description can be entered by means of a MeasEqn
component in the Schematic window. There is no explicit trajectory measurement
function.

Defined in
hpeesof/expressions/ael/digital_wireless_fun.ael
See also

constellation, const_evm

Description

The I and Q data do not need to be baseband waveforms. For example, they could be
the in-phase (real or I) and quadrature-phase (imaginary or Q) part of a modulated
carrier. The user must supply the I and Q waveforms versus time.

3-214

transpose

Purpose

Transposes a matrix
Synopsis

Y = transpose(y)

This function transposes a matrix, but does not perform a conjugate transpose for

complex matrices.
Example

a={{1, 2}, {3, 4}}
b=transpose(a)
returns {{1, 3}, {2, 4}}

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

None

3-215

MeasEqn Function Reference

ts

Purpose

Performs a frequency-to-time transform

Synopsis

ts(x, tstart, tstop, numipts, dim, windowType, windowConst, nptsspec)
See detailed Description below.

Example

The following examples of ts assume that a harmonic balance simulation was
performed with a fundamental frequency of 1 GHz and order = 8:

Y=ts(vOut) returns the time series (0, 20ps, ..., 2ns), 0 to 5 ns.
Y=ts(vOut, 0, 1ns) returns the time series (0, 10ps, ..., 1ns).
Y=ts(vOut, 0, 10ns, 201) returns the time series (0, 50ps, ... , 10ns).

Y=ts(vOut, , ,,,,, 3) returns the time series (0, 20ps, ... , 2ns), but only uses
harmonics from 1 to 3 GHz.
Used in

Harmonic balance simulations
Available as measurement component?
Not applicable

Defined in

Built in

See also

fft, fs, fspot

Description

ts(x) returns the time domain waveform from a frequency spectrum. When x is a
multidimensional vector, the transform is evaluated for each vector in the specified
dimension. For example, if x is a matrix, then ts(x) applies the transform to every row
of the matrix. If x is three dimensional, then ts(x) is applied in the lowest dimension
over the remaining two dimensions. The dimension over which to apply the transform
may be specified by dimension; the default is the lowest dimension (dimension=1).

3-216

x must be numeric. It will typically be data from a harmonic balance analysis.

By default, two cycles of the waveform are produced with 101 points, starting at time
zero, based on the lowest frequency in the input spectrum. These may be changed by
setting tstart, tstop, or numtpts.

All of the harmonics in the spectrum will be used to generate the time domain
waveform. When the higher-order harmonics are known not to contribute
significantly to the time domain waveform, only the first n harmonics may be
requested for the transform, by setting nptsspec = n.

The data to be transformed may be windowed by a window specified by windowType,
with an optional window constant windowConst. The window types allowed and their
default constants are:

0 = None

1 = Hamming 0.54
2 = Hanning 0.50
3 = Gaussian 0.75
4 = Kaiser 7.865

5 = 8510 6.0 (This is equivalent to the frequency-to-time transformation with
normal gate window setting in the 8510 series network analyzer.)

6 = Blackman
7 = Blackman-Harris

windowType can be specified either by the number or by the name.

3-217

MeasEqn Function Reference

type

Purpose

Returns the type of the data

Synopsis

type(x)

Returns a string, which is one of “Integer”, “Real”, “Complex” or “String”
Example

type(1)
“Integer”

type(1i)
“Complex”

type(“type”)
“String”

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

what

3-218

unwrap

Purpose

Unwraps phase

Synopsis

y = unwrap(phase{, jump})

where phase is a swept real variable and jump is the absolute jump. By default,
jump is set to 180.

Example

unwrap(phase(S21))
unwrap(phaserad(S21, pi))

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built-in

See also

dev_lin_phase, diff, phase, phasedeg, phaserad, ripple, unwrap
Description

This measurement unwraps a phase by changing an absolute jump greater than
jump to its 2*jump complement.

3-219

MeasEqn Function Reference

vfc

Purpose

Returns frequency-selective voltage
Synopsis

vfc(vPlus, vMinus, harm_freq_index)

where vPlus and vMinus are the voltages at the positive and negative terminals,
and harm_freq_index is the harmonic index of the desired frequency. Note that the
harm_freq_index argument's entry should reflect the number of tones in the
harmonic balance controller. For example, if one tone is used in the controller,
there should be one number inside the braces; two tones would require two
numbers separated by a comma.

Example

The following example is for two tones in the harmonic balance controller:
y=vfc(vOut, 0, {1, O})

Used in

Harmonic balance simulation
Available as measurement component?
Vic

Defined in

AEL, circuit_fun.ael

See also

ifc, pfc

Description

This measurement gives the RMS voltage value of one frequency-component of a
harmonic balance waveform.

3-220

vic_tran

Purpose

Returns the transient frequency-selective voltage
Synopsis

vic_tran(vPlus, vMinus, fundFreq, harmNum)

where vPlus and vMinus are the voltages at the positive and negative terminals,
fundFreq is the fundamental frequency, and harmNum is the harmonic number of
the fundamental.

Example

y=vfc_tran(vOut, 0, 1GHz, 1)
Used in

Transient simulations
Available as measurement component?
VifcTran

Defined in

AEL, circuit_fun.ael

See also

ifc_tran, pfc_tran

Description

This measurement gives the RMS voltage across any two nodes at a particular
frequency of interest. The fundamental frequency determines the portion of the
time-domain waveform to be converted to frequency domain. This is typically one full
period corresponding to the lowest frequency in the waveform. The harmonic number
is the fundamental frequency at which the voltage is requested (positive integer
value only).

3-221

MeasEqn Function Reference

volt_gain

Purpose

Returns the voltage gain
Synopsis

y= volt_gain(S, Zs, Z1{, Zref})

where S is the 2 x 2 scattering matrix, and Zs and Z1 are the input and output
impedances, respectively. Zref is the reference impedance, set by default to the
port impedance.

Example

y=volt_gain(S, 50, 75)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?
VoltGain

Defined in

circuit_fun.ael

See also

pwr_gain, volt_gain_max

Description

This measurement determines the ratio of the voltage across the load to the voltage
available from the source. The network-parameter transformation function “stos” can
be used to change the normalizing impedance of the scattering matrix.

3-222

volt_gain_max

Purpose

Returns the voltage gain at maximum power transfer
Synopsis

Y = volt_gain_max(S, Zs, Z1{, Zref})

where S is the 2 x 2 scattering matrix, and Zs and ZI are the input and output
impedances, respectively. Zref is the reference impedance, set by default to the
port impedances.

Example

y=volt_gain_max(S, 50, 75)

Used in

Small-signal and large-signal S-parameter simulations
Available as measurement component?
Not available

Defined in

AEL, rf_system_fun.ael

See also

pwr_gain, volt_gain

Description

This measurement determines the ratio of the voltage across the load to the voltage
available from the source at maximum power transfer. The network-parameter
transformation function “stos” can be used to change the normalizing impedance of
the scattering matrix.

3-223

MeasEqn Function Reference

VS

Purpose

Attaches an independent to data
Synopsis

vs(dependent, independent)
Example

a=[1, 2, 3]
b=[4, 5, 6]
c=vs(a, b)

Builds ¢ with independent b, and dependent a.
Used in

Not applicable

Available as measurement component?

Not applicable

Defined in

Built in

See also

indep

3-224

vspec_tran

Purpose

Returns the transient voltage spectrum
Synopsis

vspec_tran(vPlus, vMinus, fundFreq, numHarm)

where vPlus and vMinus are the voltages at the positive and negative terminals,
fundFreq is the fundamental frequency, and numHarm is the number of
harmonics of the fundamental frequency (positive integer value only).

Example

y=vspec_tran(vl, v2, 1GHz, 8)
Used in

Transient simulation
Available as measurement component?
VspecTran

Defined in

AEL, circuit_fun.ael

See also

ispec_tran, pspec_tran
Description

This measurement gives a voltage spectrum across any two nodes. The measurement
gives a set of RMS voltages at each frequency. The fundamental frequency
determines the portion of the time-domain waveform to be converted to the frequency
domain. This is typically one full period corresponding to the lowest frequency in the
waveform. numHarm is the number of harmonics of the fundamental frequency to be
included in the voltage spectrum.

3-225

MeasEqn Function Reference

VSWr

Purpose
Returns the voltage standing-wave ratio (VSWR)
Synopsis
vswr(Sii)
where Sii is the complex reflection coefficient.
Example
y=vswr(S11)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
VSWR
Defined in
AEL, rf_system_fun.ael
See also
yin, zin
Description

Given a complex reflection coefficient, this measurement returns the voltage standing
wave ratio.

3-226

vt

Purpose

Returns time-domain voltage waveform
Synopsis

vt(vPlus, vMinus, tmin, tmax, numOfPnts)

where vPlus and vMinus are the voltages at the positive and negative nodes,
respectively, tmin and tmin are the start time and stop time, respectively, and
numOfPts is the number of points (integer values only).

Example

y=vt(vOut, 0, 0, 10nsec, 201)
Used in

Harmonic balance simulation
Available as measurement component?
Vit

Defined in

AEL, circuit_fun.ael

See also

it

Description

This measurement converts a harmonic-balance voltage frequency spectrum to a
time-domain voltage waveform.

3-227

MeasEqn Function Reference

vt_tran
Purpose
Returns the transient time-domain voltage waveform
Synopsis
Y = vt_tran(vPlus, vMinus)
where vPlus and vMinus are the terminals across which the voltage is measured.
Example
y=vt_tran(vl, v2)
Used in
Transient simulations
Available as measurement component?
VtTran
Defined in
AEL, circuit_fun.ael
See also
vt
Description

This measurement produces a transient time-domain voltage waveform for specified
nodes. vPlus and vMinus are the nodes across which the voltage is measured.

3-228

what

Purpose

Returns size and type of data
Synopsis

what(x)

Example

None

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

type

Description

what() is used to find out the dimensions of a piece of data, the attached
independents, the type, and (in the case of a matrix) the number of rows and columns.
Use what() by entering a listing column and using the trace expression what(x).

3-229

MeasEqn Function Reference

yield_sens

Purpose

Returns the yield as a function of a design variable
Synopsis

yield_sens(pf_data{, numBins})

where pf_data is a binary-valued scalar data set indicating the pass/fail status of
each value of a companion independent variable, and numBins is the number of
subintervals or bins used to measure yield_sens.

Example

yield_sens(pf_data)
yield_sens(pf_data, 20)

Used in

Monte Carlo simulation

Available as measurement component?

This function can only be entered by means of a Eqn component in the Data Display
window (or by choosing Insert > Equation, or clicking the Eqn button on the left side
of the window). There is no measurement component in schematic window.

Defined in

AEL, statistical_fun.ael
See also

cdf, histogram, pdf
Description

This function measures the yield as a function of a design variable. The default value
for numBins is set to log(numOfPts)/1og(2.0) by default. For more information and an
example refer to "Creating a Sensitivity Histogram" on page 3-18 in the Tuning,
Optimization and Statistical Design manual.

3-230

yin
Purpose
Returns the port input admittance
Synopsis
yin(Sii, Z)
where Sii is a complex reflection coefficient and Z is a reference impedance.
Example
y=yin(S11, 50)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
Yin
Defined in
AEL, network_fun.ael
See also
VSWT, zin
Description

Given a reflection coefficient and the reference impedance, this measurement returns
the input admittance looking into the measurement ports.

3-231

MeasEqn Function Reference

yopt

Purpose

Returns optimum admittance for noise match
Synopsis

yopt(gammaOpt, zRef)

where gammaOpt is a optimum reflection coefficient and zRef is a reference
impedance.

Example

y = yopt(Sopt, 50)

Used in

Small-signal S-parameter simulations
Available as measurement component?
Yopt

Defined in

Built in

See also

zopt

Description

This complex measurement produces the optimum source admittance for noise
matching. gammaOpt is the optimum reflection coefficient that must be presented at
the input of the network to realize the minimum noise figure (NFmin).

3-232

ytoabcd
Purpose
Performs Y-to-ABCD conversion
Synopsis
ytoabed(Y)
where Y is an admittance matrix.
Example
a = ytoabed(Y)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

abcdtoh, htoabed
Description

This measurement transforms an admittance matrix of a 2-port network into a
hybrid matrix.

3-233

MeasEqn Function Reference

ytoh
Purpose
Performs Y-to-H conversion
Synopsis
ytoh(Y)
where Y is an admittance matrix.
Example
h = ytoh(Y)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

htoy, ytoabed
Description

This measurement transforms an admittance matrix of a 2-port network into a
hybrid matrix.

3-234

ytos
Purpose
Performs Y-to-S conversion
Synopsis
S = ytos(Y, zRef)
where Y is an admittance matrix and zRef is a reference impedance.
Example
s = ytos(Y, 50.0)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoy, ytoz

Description

This measurement transforms an admittance matrix into a scattering matrix.

3-235

MeasEqn Function Reference

ytoz
Purpose
Performs Y-to-Z conversion
Synopsis
Z = ytoz(Y)
where Y is an admittance matrix
Example
z = ytoz(Y)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

ytos, ztoy

Description

This measurement transforms an admittance matrix to an impedance matrix.

3-236

Zeros

Purpose

Returns a matrix of zeros
Synopsis

Y = zeros(2)

Y = zeros(2, 3)

This is the zeros matrix. If only one argument is supplied, then a square matrix is
returned. If two are supplied, then a matrix of zeros with size rows x cols is returned.

Example

a=zeros(2);
returns {{0, 0}, {0, O}}

b=(2, 3)
returns {{0, 0, 0}, {0, 0, O}}

Used in

Not applicable

Available as measurement component?
Not applicable

Defined in

Built in

See also

identity, ones

3-237

MeasEqn Function Reference

zin
Purpose
Returns the port input impedance
Synopsis
zin(Sii, Z)
where Sii is a complex reflection coefficient and Z is a reference impedance.
Example
y=zin(S11, 50.0)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?
Zin
Defined in
AEL, network_fun.ael
See also
VSWT, yin
Description

Given a reflection coefficient and the reference impedance, this measurement returns
the input impedance looking into the measurement ports.

3-238

zopt

Purpose

Returns the optimum impedance for noise matching
Synopsis

zopt(gammaOpt, zRef)

where gammaOpt is an optimum reflection coefficient and zRef is a reference
impedance.

Example

y = zopt(Sopt, 50)

Used in

Small-signal S-parameter simulations
Available as measurement component?
Zopt

Defined in

AEL, circuit_fun.ael

See also

yopt

Description

This complex measurement produces the optimum source impedance for noise
matching. gammaOpt is the optimum reflection coefficient that must be presented at
the input of a network to realize the minimum noise figure (NFmin).

3-239

MeasEqn Function Reference

ztoabcd
Purpose
Performs Z-to-ABCD conversion
Synopsis
ztoabed(Z)
where Z is an impedance matrix.
Example
a = ztoabed(Z)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

abcdtoz, ytoabed, ztoh
Description

This measurement transforms an impedance matrix of a 2-port network into a chain
(ABCD) matrix.

3-240

ztoh
Purpose
Performs Z-to-H conversion
Synopsis
ztoh(Z)
where Z is an impedance matrix.
Example
h = ztoh(Z)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

htoz, ytoh, ztoabed
Description

This measurement transforms an impedance matrix of a 2-port network into a hybrid
matrix.

3-241

MeasEqn Function Reference

ztos
Purpose
Performs Z-to-S conversion
Synopsis
ztos(Z, zRef)
where Z is an impedance matrix and zRef is a reference impedance.
Example
s = ztos(Z, 50.0)
Used in
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoz, ytos, ztoy
Description

This measurement transforms an impedance matrix to a scattering matrix.

3-242

ztoy
Purpose
Performs Z-to-Y conversion
Synopsis
ztoy(Z)
where Z is an impedance matrix.
Example
y = ztoy(Z)
Used in...
Small-signal and large-signal S-parameter simulations
Available as measurement component?

This equation can be entered by means of a MeasEqn component in S_Param
Simulation and LSSP Simulation palettes in the Schematic window. There is no
explicit measurement component.

Defined in

AEL, network_fun.ael
See also

stoz, ytos, ztoy
Description

This measurement transforms an impedance matrix to an admittance matrix.

3-243

MeasEqn Function Reference

3-244

Chapter 4: Simulator Expression Reference

This chapter lists and describes the expressions (functions) that are available within
the Advanced Design System at simulation runtime. These expressions include
mathematical functions such as those for matrix conversion, trigonometry, absolute
value, and the like.

Unlike the measurement equations (MeasEqn) described in Chapter 3, these
equations are used internally during simulation time, and are known as Simulator
Expressions or sometimes as VarEqn expressions. These expressions can be entered
into the program by means of the VarEqn component or used in place of a parameter
for any component: for example in a resister, R=sin5. These expressions are
evaluated at the start of simulation. If a term is undefined at the start of simulation,
such as R=S;, where the results of S;; will not be known until the simulation is

complete, an error will be returned.

The VarEqn component is available in the Data Items palette in an Analog/RF
Systems Schematic window or from the Controllers palette in a Signal Processing
Schematic window.

For information on the general use of VAR components, place a VAR component on a
Schematic, double click it, and then click the Help button in the Component dialog
box. Or from any ADS Window choose Help > Topics and Index > Components >
Circuit Components > Introduction and Simulation Components > Chapter 1,
Introduction > VAR.

In this chapter you will find:
¢ A list of the Simulator Expressions.
¢ A list of simulator variables and constants.

¢ A list of mathematical operators and hierarchy that can be used with these
expressions.

How to Enter Simulator Expressions

The basic ways to enter the equations or expressions that are available at simulation
runtime are as follows:

¢ Place and setup a VarEqn component.

* Place any component and enter a function in place of a component parameter.

How to Enter Simulator Expressions 4-1

Simulator Expression Reference

* Place and set up a FDD (frequency-defined device) or SDD
(symbolically-defined device).

Simulator Expressions

The following table lists the Simulator Expressions available in ADS and a brief
description of each.

Table 4-1.
Function Description
d_atan2(a, b, c, d) derivative of atan2()
sin (x) sine function
cos (X) cosine function
tan (x) tangent function
cot(x) cotangent function
sinh(x) hyperbolic sine function
cosh(x) hyperbolic cosine function
tanh(x) hyperbolic tangent function
coth(x) hyperbolic cotangent function
exp(x) exponential function
In(x) natural log function
log(x) log base 10 function
sqrt(x) square root function
conj(x) complex-conjugate function
mag(x) magnitude function
phaserad(x) phase (in radians) function
imag(x) imaginary-part function
real(x) real-part function
phasedeg(x) phase (in degrees) function
phase(x) phase (in degrees) function
deg(x) radian-to-degree conversion function
rad(x) degree-to-radian conversion function
int(x) convert-to-integer function

4-2 Simulator Expressions

Function

Description

atan2(y, x)

arctangent function (two real arguments)

complex(x, y)

real-to-complex conversion function

polar(x, y)

polar-to-rectangular conversion function

dbpolar(x, y)

(dB,angle)-to-rectangular conversion function

vswrpolar(x, y)

(VSWR,angle)-to-rectangular conversion
function

ripple(x, v, z, v)

ripple(amplitude, intercept, period, variable)
sinusoidal ripple function

db(x) decibel function
max(x, y) maximum function
min(x, y) minimum function

spectrum(...)

spectrum(function(0), Npts, Period, Delay,
Window) returns spectral array

impulse(...) impulse(CpxFunction(0), Npts, TimeStep,
CenterFreq, Window) returns impulse array

abs(A0) absolute value function

sgn(A0) signum function

arcsinh(A0) arcsinh function

arctan(A0) arctan function

acos(A0) Arc-cosine(x) for x real and -1 <=x <=1

asin(A0) Arc-sine(x) for x real and -1 <= x <=1

acosh(A0) Arc-hyperbolic-cosine(x) for x real and x >= 1

atanh(A0) Arc-hyperbolic-tangent(x) for x real and

in(A0, A1) Bessel function

i(...) current function

deembed(A0) de-embedding function

delay(A0) group delay function

deriv(AO, Al) derivative function

fread(A0) raw-file reading function

interp1(AO, Al)

interpolation function--one independent
variable

interp2(A0, A1, A2)

interpolation function--two independent
variables

Simulator Expressions 4-3

Simulator Expression Reference

Function

Description

interp3(A0, Al, A2, A3)

interpolation function--three independent
variables

interp4(A0, Al, A2, A3, Ad)

interpolation function--four independent
variables

interp(...) somewhat generalized scalar interpolation
function
lookup(...) data lookup function

access_data(...)

datafile dependents' lookup/interpolation
function

access_all_data(...)

datafile indep+dep lookup/interpolation
function

polarcpx(...)

polar to rectangular conversion function

scalearray(A0, A1)

scalar times a vector (array) function

ginterp(A0, Al)

quick and dirty interpolation function

ramp(AO0) ramp function
step(A0) step function
setDT(AO) Turns on discrete time transient mode (returns

argument)

readraw(A0, Al, A2)

rawfile reading routine

readlib(AO, A1, A2, A3)

rawfile-from-library reading routine

readdata(...)

library or rawfile reading routine

rect(AO, A1, A2)

rectangular pulse function

rem(...)

remainder function. Examples: rem(10,4)
returns 2, because 10 divided by 4 is 2 with a
remainder of 2. rem(5,5) returns 0. rem(x,y) =
X - int(x/y)*y. If either x or y is a complex
number, it's replaced by its mag() value.

limit_warn([AOQ, Al, A2, A3, A4])

limit, default and warn function

awg_dia(A0) wire gauge to diameter in meters
rpsmooth(A0) rectangular-to-polar smoothing function
sens(A0, Al) sensitivity function

sinc(A0) sin(x)/x function

sprintf(A0, A1) formatted print utility

strcat(...) string concatenation utility

4-4 Simulator Expressions

Function

Description

system(A0)

UNIX system call function

rawtoarray(...)

rawfile pointer to sym array conversion
function

makearray(...)

(1:real|2:complex|3:string, Al, A2..) or (array,
startindex, stoplndex)

list(...)

length(A0) returns number of elements in array

v(...) voltage function

inoise(A0) noise current function

vnoise(A0) noise voltage function

nf(A0) noise figure function

vss(...) small-signal voltage function

visb(...) small-signal lower-sideband voltage function
vusb(...) small-signal upper-sideband voltage function
iss(...) small-signal current function

ilsb(...) small-signal lower-sideband current function
iusb(...) small-signal upper-sideband current function

dphase(A0, Al)

Continuous phase difference (radians)
between A0 and Al

dbm(A0, Al)

convert voltage and impedance into dBm

dbmtoa(A0, Al)

convert dBm and impedance into short circuit
current

dbmtov(AO, Al)

convert dBm and impedance into open circuit
voltage

dbmtow(A0) convert dBm to watts; takes one argument,
e.g., domtow (-10) returns 1E-4 watts; can be
combined with other functions, such as polar,
where the polar argument is in degrees

dbwtow(A0) convert dBW to watts; see dbmtow for more

information

innerprod(...)

inner-product function

thd(A0) total-harmonic-distortion function
norm(A0) norm function
rms(...) root-mean-square function

Simulator Expressions 4-5

Simulator Expression Reference

Function

Description

t0i(AO)

third-order-intercept function

freq_mult_coef(A0)

frequency multiplier polynomial generator
function

freq_mult_poly(A0, Al)

frequency multiplier polynomial evaluation
function

window(A0, Al, A2, A3, Ad)

spectral windowing function

internal_window(AO0, Al, A2, A3, A4, A5)

internal spectral windowing function

generate_pulse_train_spectra(A0, Al, A2, A3,
A4, A5)

generate a pulse train spectra

internal_generate_pulse_train_spectra(AO0,
Al, A2, A3, A4, A5, A6)

internal generate a pulse train spectra

sym_set(A0, Al)

set sym variable to a given value

log_amp(A0, Al, A2, A3)

successive detection logarithmic amplifier

log_amp_cas(A0, Al, A2, A3)

true logarithmic amplifier

generate_gpsk_pulse_spectra(A0, A1, A2,
A3, A4, A5, AB)

generate a QPSK pulse train spectra

internal_generate_qpsk_pulse_spectra(A0,
Al, A2, A3, A4, A5, A6, A7)

internal generate a QPSK pulse train spectra

generate_piqpsk_spectra(A0, Al, A2, A3, A4,
A5, AB)

generate a pi/4 QPSK pulse train spectra

internal_generate_pigpsk_spectra(A0, A1, A2,
A3, A4, A5, A6, A7)

internal generate a pi/4 QPSK pulse train
spectra

bin(A0)

function convert a binary to integer

itob(A0, [A1])

convert integer to binary

generate_gmsk_pulse_spectra(A0, Al, A2,
A3, A4, A5, A6, A7)

generate a gmsk pulse train spectra

internal_generate_gmsk_pulse_spectra(AO,
Al, A2, A3, A4, A5, A6, A7, A8)

internal generate a gmsk pulse train spectra

generate_gam16_spectra(A0, AL, A2, A3, A4,
A5, AB)

generate a 16-QAM pulse train spectra

internal_generate_qam16_spectra(A0, Al,
A2, A3, A4, A5, A6, A7)

internal generate a 16-QAM pulse train
spectra

generate_gmsk_ig_spectra(A0, Al, A2, A3,
A4, A5, AB)

generate the gmsk 'i' or °g'

4-6 Simulator Expressions

Function

Description

internal_generate_gmsk_ig_spectra(A0, Al,
A2, A3, A4, A5, A6, A7)

internal generate the gmsk i' or °q'

get_fund_freq(A0)

Get the frequency associated with a specified
fundamental index

internal_get_fund_freq(A0, Al)

internal function to get frequency for a
specified fundamental index

ktoc(A0) convert Kelvin to Celsius
ctok(A0) convert Celsius to Kelvin
ftoc(A0) convert Fahrenheit to Celsius
ctof(A0) convert Celsius to Fahrenheit
ftok(A0) convert Fahrenheit to Kelvin
ktof(AO) convert Kelvin to Fahrenheit

get_array_size(A0)

Get the size of the array

eval_poly(A0, Al, A2)

polynomial evaluation function

pwi(...)

piecewise-linear function

phase_noise_pwl(...)

piecewise-linear function for computing phase
noise

pwir(...)

piecewise-linear-repeated function

pulse(time, [low, high, delay, rise, fall, width,
period])

periodic pulse function

cos_pulse(time, [low, high, delay, rise, fall,
width, period])

periodic cosine shaped pulse function

erf_pulse(time, [low, high, delay, rise, fall,
width, period])

periodic error function shaped pulse function

damped_sin(time, [offset, amplitude, freq,
delay, damping, phase])

damped sin function

multi_freq(time, amplitude, freql, freq2, n,
[seed])

multifrequency function

exp_pulse(time, [low, high, delay1, taul,
delay2, tau2])

exponential pulse function

sffm(time, [offset, amplitude, carrier_freq,
mod_index, signal_freq])

signal frequency FM

bitseq(time, [clockfreq, trise, tfall, vlow, vhigh,
bitseq])

bit sequence function

Simulator Expressions 4-7

Simulator Expression Reference

Function

Description

Ifsr(AO, Al)

Ifsr(taps, seed) returns a string containing
complete sequence

read_data(...)

read_data("file|dataset", "locName",
"fileType")

read_lib(...)

read_lib("libName", "item", "fileType")

get_block(AO0, Al)

HPvar tree from block name function

get_max_points(A0, Al)

maximum points of independent variable

dsexpr(A0, Al)

Evaluate a dataset expression to an hpvar

dstoarray(AO, [Al])

Convert an hpvar to an array

get_attribute(...)

value of attribute of a set of data

dep_data(A0, A1, [A2])

dependent variable value

names(A0, Al)

array of names of indepVars and/or depVars in
dataset

index(A0, A1, [A2, A3])

get index of name in array

cxform(AQ, A1, A2)

transform complex data

transform(A0, A1, A2, [A3, A4])

transform complex depVars in dataset

stypexform(A0, Al, A2, A3)

Y, Z, H, G, to S matrix transform

miximt_coef(A0, Al, A2, A3, Ad)

Mixer IMT polynomial generator function

amp_harm_coef(A0, Al, A2)

Amplifier polynomial generator function

miximt_poly(AO, Al, A2, A3, A4)

Mixer IMT polynomial evaluation function

gcdata_to_poly(AO, Al)

Fit gain compression data to a polynomial

compute_poly _coef(A0, Al, A2, A3, A4, A5,
A6, A7, A8, A9, A10, All, A12)

Compute polynomial coefficients for user
specified nonlinearities such TOI, Psat etc

cpx_gain_poly(A0, Al, A2)

Compute complex gain for given polynomial
coefficients

coef_count(A0)

Count the number of coefficients

imt_hpvar_to_array(AO, Al, A2, A3)

Convert IMT hpvar data to an array

imt_hbdata_to_array(A0, Al, A2, A3, A4, A5)

Convert 2-tone HB data to an IMT array

echo(A0)

echo-arguments function

value(AQ)

print-value function

4-8 Simulator Expressions

Simulator Variables and Constants

When you are using Simulator Expressions, keep in mind that certain variables and
constants are reserved words in ADS. You can use these variables and constants, but
you cannot redefine them to something else. The following table lists the simulator
variables/constants available in ADS and a brief description of each.

Table 4-2.

Variable/Constant Name

[

Description

time=0s

the analysis time

timestep=1s

the analysis time step

tranorder = 1

the transient analysis integration order

freq = 1e+006 Hz

the analysis frequency

Nsample =0

signal processing analysis sample number

ScheduleCycle =0

signal processing schedule cycle number

DefaultValue = -1

signal processing default parameter value

noisefreq = 1e+006 Hz

the spectral noise analysis frequency

ssfreq = 1e+006 Hz

the small-signal mixer analysis frequency

temp=25C the analysis temperature
e=2.71828 2.71838...
In10 = 2.30259 In(10)

c0 =2.99792e+008 m/s

the speed of light

e0 = 8.85419e-012

vacuum permittivity

u0 = 1.25664e-006

vacuum permeability

boltzmann = 1.38066e-023

Boltzmann's constant

gelectron = 1.60218e-019

the charge of an electron

planck = 6.62608e-034

Planck's constant

hugereal = 1.79769e+308

largest real number

tinyreal = 2.22507e-308

smallest real number

sourcelLevel =1

used for source-level sweeping

dcSourcelevel =1

used for DC source-level sweeping

logRshunt =0

used for DC Rshunt sweeping

logNodesetScale = 0

used for DC nodeset simulation

Simulator Variables and Constants

4-9

Simulator Expression Reference

Table 4-2.

Variable/Constant Name Description

logRforce =0 used for HB Rforce sweeping

mcindex =0 index for Monte Carlo sweeps

doeindex =0 index for Design of Experiment sweeps

Costindex =0 index for optimization cost plots

mcTrial = 0 trial counter for Monte Carlo based
simulations

optlter=0 optimization job iteration counter

doelter=0 doe experiment iteration counter

Devicelndex = 0 device Index used for noise contribution or DC
OP output

LinearizedElementindex = 0 index for BudLinearization sweep

DF_Value = -1e+009 reference to corresponding value defined in
Data Flow controller

DF_ZERO_OHMS = 1e-013 symbol for use as zero ohms

DF_Defaultint = -1e+009 reference to default int value defined in Data
Flow controller

Mathematical Operators and Hierarchy

Expressions are evaluated from left to right, unless there are parentheses. Operators
are listed from higher to lower precedence. Operators on the same line have the same
precedence. For example, a+b*c means a+(b*c), because * has a higher precedence
than +. Similarly, a+b-c means (a+b)—c, because + and — have the same precedence
(and because + is left-associative).

The operators !, &&, and || work with the logical values. The operands are tested for
the values TRUE and FALSE, and the result of the operation is either TRUE or
FALSE. In AEL a logical test of a value is TRUE for non-zero numbers or strings with
non-zero length, and FALSE for 0.0 (real), 0 (integer), NULL or empty strings. Note
that the right hand operand of && is only evaluated if the left hand operand tests
TRUE, and the right hand operand of | | is only evaluated if the left hand operand
tests FALSE.

The operators >=, <=, >, <, ==, |=, AND, OR, EQUALS, and NOT EQUALS also
produce logical results, producing a logical TRUE or FALSE upon comparing the
values of two expressions. These operators are most often used to compare two real

4-10 Mathematical Operators and Hierarchy

numbers or integers. These operators operate differently in AEL than C with string
expressions in that they actually perform the equivalent of stremp() between the first
and second operands, and test the return value against 0 using the specified operator.

Table 4-3. Operator Precedence

Operator Name Example

@) function call, matrix indexer foo(expr_list)
X(expr,expr)

[] sweep indexer, sweep generator X[expr_list]
[expr_list]

{} matrix generator {expr_list}

* exponentiation expr*expr

! not lexpr

* multiply expr * expr

/ divide expr / expr

x* element-wise multiply expr .* expr

A element-wise divide expr ./ expr

+ add expr + expr

- subtract expr - expr

sequence operator exp::expr::expr
wildcard start::inc::stop

< less than expr < expr

<= less than or equal to expr <= expr

> greater than expr > expr

>= greater than or equal to expr >= expr

== equal expr == expr

1= not equal expr != expr

&& logical and expr && expr

Il logical or expr || expr

Mathematical Operators and Hierarchy 4-11

Simulator Expression Reference

4-12 Mathematical Operators and Hierarchy

Index

B

Backward Traveling Waves, 2-11
Budget Measurement, 2-10
Built-In Constants, 2-9

C
Case Sensitivity, 2-2
Component Options, 2-12

D
Display Parameter on schematic, 2-12

E
Envelope Data, 2-6

F
Frequency Plan, 2-10

G
Generating Data, 2-7

H
Harmonic Balance Data, 2-6

|

if-then-else Construct, 2-7
Indexing, 2-5

Instance Name, 2-11

M

mathematical operators, 4-10
Matrices, 2-5

Meas, 2-12

MeasEqn, 1-1, 2-11

Measurement Equations, 1-1
Measurements and Expressions, 2-2
Multidimensional Sweeps, 2-5

O
Operator Precedence, 2-8

P
Parameter Sweeps, 2-4

R
Reflections, 2-11

S

Select Parameter, 2-11

Simulation Data, 2-2

simulator functions, 1-1, 4-1

simulator functions, list, 4-2

simulator functions, variables and
constants, 4-9

S-Parameters, 2-5

Stability, 3-145, 3-146, 3-200, 3-201

T
Transient Data, 2-6

U
User-Defined Functions, 2-12

V
VarEqn functions, 1-1
Variable Names, 2-3

Index-1

Index-2

	Contents
	Chapter 1: Introduction to Expressions and Functions
	Simulator Expressions
	Measurement Equations
	AEL Math Functions

	Chapter 2: Using the MeasEqn Function Reference
	Manipulating Simulation Data with Equations
	Simulation Data
	Case Sensitivity
	Measurements and Expressions
	Variable Names
	Simple Sweeps and Using “[]”
	S-Parameters and Matrices
	Matrices
	Multidimensional Sweeps and Indexing
	Working with Harmonic Balance (HB) Data
	Working with Transient Data
	Working with Envelope Data
	if-then-else Construct
	Generating Data
	Operator Precedence
	Built-in Constants
	Budget Measurement Analysis
	MeasEqn
	User-Defined Functions

	Chapter 3: MeasEqn Function Reference
	Chapter 4: Simulator Expression Reference
	How to Enter Simulator Expressions
	Simulator Expressions
	Simulator Variables and Constants
	Mathematical Operators and Hierarchy

	Index

